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Abstract

We examine the existence (and mostly non-existence) of fresh sets in commonly
used iterations of Prikry-type forcing notions. Results of [4] are generalized. As an
application, a question of a referee of [10] is answered, as well as a question of Gold-
berg regarding the Cover and Approximation properties. In addition, preservation of
stationary sets is addressed.

1 Introduction

Let P be a forcing notion and G ⊆ P its generic subset. Suppose that W is a κ−complete

ultrafilter over κ in V [G]. Let U = W ∩ V . In general, U need not be in V . However, by J.

Hamkins [7], if P has a gap below κ, i.e. for some β < κ, P = R ∗Q
∼

such that |R| < β and

Q
∼

is β + 1−strategically closed, then U ∈ V . One of the main techniques was the analysis

of fresh sets in forcings extensions with P .

Following Hamkins, a subset Z of λ is called fresh (over V ) if for every α < λ, Z ∩ α ∈ V ,

but Z /∈ V .

In [4] the following was shown:

Theorem 1.1 U ∈ V , provided that–

1. all cardinals of V in the interval [κ, (2κ)V ] are preserved,

2. no fresh subsets are added to cardinals λ, κ ≤ λ ≤ (2κ)V .

*We are grateful to participants of TAU Set Theory seminar and in particular to Menachem Magidor
and to Omer Ben-Neria for their comments and remarks. We would like to thank the referee for reading the
paper and offering improvements and useful remarks. The work of the first author was partially supported
by ISF grant No. 882/22.
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So, fresh sets are relevant for understanding whether U ∈ V .

Structural properties of the forcing being considered may rule out the possibility that fresh

subset are added to certain cardinals. J. Hamkins [7] proved that if a forcing has a gap

below κ, then no fresh subsets of a cardinal µ whose cofinality is above the gap are added.

Another example in this spirit is the following Lemma from [4]:

Lemma 1.2 Let κ be measurable. Let V ⊆ V [G] be a forcing extension that preserves κ+.

Assume that some normal measure U ∈ V on κ concentrates on the set {α < κ : 2α = α+}
and extends to a normal measure W ∈ V [G] on κ.

Then no fresh subsets are added to κ in the extension V ⊆ V [G].

We aim to extend Hamkins’ approach to a broader class of forcing notions, focusing

primarily on iterations of Prikry-type forcings. Lemma 1.2 can be used, for example, to

prove that such iterations - of length which is a measurable cardinal κ - do not introduce

any fresh subsets of κ.1 Additional results concerning nonexistence of fresh subsets of κ+ were

provided in [4] as well2. These results suffice to analyze the structure of normal measures on

κ after performing iterations of Prikry-type forcings. This analysis has been done in a series

of papers [4], [5],[9], [6].

Continuing the series of papers, the present work focuses mainly on fresh sets. We will

generalize the aforementioned results from [4], and connect them to new results regard-

ing preservation of stationarity. The motivating questions that this paper answers are the

following:

Question 1.3 Let κ be an inaccessible cardinal. Which stationary subsets S ⊆ κ remain

stationary after forcing with an iteration of Prikry-type forcings of length κ?

Question 1.4 Assume that W is a κ complete ultrafilter in the generic extension, after

forcing with an iteration of Prikry-type forcings of length κ. Assume that W concentrates

on a ground model set. Is it true that W lifts a κ-complete ultrafilter of the ground model?3

Question 1.5 Let κ be an inaccessible. Can iterations of length κ of Prikry-type forcings

add fresh subsets to κ? (note that Lemma 1.2 doesn’t apply if κ is not measurable).
1Some relatively mild assumptions are needed to be imposed on the forcing in order to deduce that. We

will provide below a list of sufficient conditions (see subsection 1.2 below). See also [4, Corrolary 4.7] for a
detailed proof.

2See Corollary 4.9, Lemma 4.10 and Lemma 4.11 in [4].
3Note that Theorem 1.1 applies only to the case where W concentrates on κ. A central example to be

considered here is whether κ-complete ultrafilters on (Pκ(λ))
V [G]

(for λ > κ) restrict to ultrafilters of V ,

provided that they concentrate on (Pκ(λ))
V
.
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Question 1.6 Can the nonstationary support iteration of Prikry-type forcings (a definition

of the nonstationary support will be given below) add new measurable cardinals?4

Question 1.7 (Goldberg) Let κ be an inaccessible. Does iterations of length κ of Prikry-

type forcings have Hamkins’ κ-cover and approximation properties?5

1.1 Framework

Let us describe the framework of this paper. Throughout the entire paper,

⟨Pα, Q∼β | α ≤ κ, β < κ⟩

is an iteration of length κ of Prikry-type forcings, taken with either Magidor (full support),

nonstationary or Easton support. This means that, for every α < κ,

⊩Pα ”⟨Q
∼α,≤∼Q∼α ,≤∼

∗
Q∼α

⟩ is a Prikry-type forcing notion”

and conditions in Pα, for a given α ≤ κ, are sequences p = ⟨p
∼
(β) : β < α⟩ such that, for

every β < α, p ↾ β ∈ Pβ and p ↾ β ⊩ p
∼
(β) ∈ Q

∼β. Additional requirements might be imposed

on the set supp(p) = {β < α : p ↾ β ⊩ p
∼
(β) ̸= 0∼Q∼β

}, depending on the chosen support for

the iteration; this point will be further explained below.

Whenever p = ⟨p
∼
(β) : β < α⟩, q = ⟨ q

∼
(β) : β < α⟩ ∈ Pα, we say that q extends p, and denote

q ≥Pα p, if for every β < α, q ↾ β ≥Pβ
p ↾ β, q ↾ β ⊩ p

∼
(β)≤∼Q∼β

q
∼
(β), and for all but finitely

many β ∈ supp(p), q ↾ β ⊩ q
∼
(β) ≥∗

Q∼β
p
∼
(β). The extension q ≥ p is called direct if for all

β ∈ supp(p), q ↾ β ⊩ q
∼
(β) ≥∗

Q∼β
p
∼
(β), in which case we denote q ≥∗ p.

We refer the reader to [3] for a discussion about the full and Easton support iterations, and

to [1] for a discussion about nonstationary support iterations.

We will also include the following assumptions:

1. GCH.

2. κ is an inaccessible cardinal.

3. For every β < κ, ⟨Qβ,≤∗
Qβ

⟩ is forced to be |β|−closed.

Note that for a singular β this implies |β|+−closure.

4This question was raised by the referee of [10]. Regarding the Full and Easton support iterations, a
negative answer is already known, see [3].

5For a definition of the properties, see section 6.
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4. For every β < κ, |Q
∼β| < κ.

5. If the Easton support is used, then for every p ∈ Pκ and every inaccessible α ≤ κ,

α > |supp(p) ∩ α|, provided that for every β < α, |Pβ| < α.

6. If the non-stationary support is used, then for every p ∈ Pκ and every inaccessible

α ≤ κ, supp(p) ∩ α is non-stationary in α, provided that for every β < α, |Pβ| < α.

1.2 Structure of the paper

We conclude the introduction by summarizing the structure and the main theorems of the

paper.

� In Section 2 we deal with preservation of stationarity. The main result is Theorem

2.2, in which we prove that, for S ⊆ κ, its stationarity is preserved after forcing with

Pκ with an Easton or nonstationary support; we also provide a sufficient condition for

preservation of S when the full support is taken. This answers Question 1.3.

� In Sections 3-5 we address fresh subsets, providing a negative answer to Question 1.5

under relatively mild additional assumptions on the forcing Pκ. The proof methods

depend on the chosen support: in section 3 we deal with the nonstationary support

(Theorem 3.1); in section 4 we deal with the Easton support (Theorem 4.1 under the

additional assumption that κ is Mahlo, and see Theorem 4.5 for a version without it);

in section 5 we deal with the full support (Theorem 5.1).

In addition, we provide in section 3 a negative answer to Question 1.6, see Theorem

3.5.

� In Section 6, we address Hamkins’ Cover and Approximation properties. We show in

Theorem 6.6 that Pκ satisfies the κ-Cover and κ-Approximation properties (as long as

it satisfies the mild assumptions needed for the proofs that no fresh subsets are added,

given in Sections 3-5), answering question 1.7 above. As an application, an affirmative

answer to Question 1.4 is given in Corollary 6.7. This generalizes Theorem 1.1 in the

context of iterations of Prikry-type forcings.
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2 On preservation of stationarity in Prikry-type exten-

sions

Let κ be an inaccessible cardinal and let S be a stationary subset of κ. Suppose that

⟨Pα, Q∼β | α ≤ κ, β < κ⟩ is an Easton or a full (Magidor) or a non-stationary support

iteration of Prikry-type forcing notions as in the introduction. Let Gκ be a generic subset of

Pκ.

We would like to address here a question whether S remains stationary in V [Gκ].

Remark 2.1 1. Note that we can assume that κ is a regular cardinal in V , since otherwise

it is possible to replace it by cof(κ).

2. Our main interest will be in situations where κ is an inaccessible cardinal in V [G].

3. If κ is a Mahlo cardinal, then Easton support iterations satisfy κ−c.c. and so preserves

stationary subsets of κ.

4. If a full support iteration of Prikry forcings is used, then the set of former measurables

which changed their cofinality will be non-stationary, as witnessed by the regressive

function which maps each one of them to the first element in its Prikry sequence.

Theorem 2.2 Assume GCH. Let κ be an inaccessible cardinal. Let P = Pκ be as in the

introduction. Let G ⊆ Pκ be generic over V . Then κ is inaccessible in V [G], and–

1. If S ⊆ κ is stationary in V and consists of singulars, then S remains stationary in

V [G].

2. If the Easton or nonstationary support is used, then Pκ preserves stationary subsets of

κ.

3. If the full support is used, S ⊆ κ is stationary in V , and–

(a) For every α ∈ S, ⟨Q
∼α,≤∗⟩ is |α|+-complete.

(b) For every α < κ, Q
∼α has the property that for every p, q, r ∈ Qα, if p, q ≥∗ r, then

there is t ∈ Qα such that t ≥∗ p, q.

Then S remains stationary in V [G].
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The inaccessibility of κ in V [G] is proved in 2.6. Point 1 of the Theorem is proved in

2.7. Point 2 of the Theorem is proved in Theorems 2.9 and 2.11. Point 3 of the Theorem is

proved in 2.10.

Let us start with the following lemma which is a weak form of a strong Prikry condition:

Lemma 2.3 Let D ⊆ Pκ be a dense open and let p ∈ Pκ. Then there are α < κ and q ≥∗ p

such that for every r ∈ Pα, r ≥Pα q ↾ α there is r′ ≥Pα r such that r′⌢q \ α ∈ D.

Proof. Let D and p = ⟨p
∼
(γ) | γ < κ⟩ be as in the statement of the lemma.

We prove the lemma for the full support iteration. The arguments for the Easton and for

the non-stationary support iterations are very similar, only coordinates in supports should

be considered.

Suppose that the conclusion of the lemma fails.

We define by recursion, for each β < κ, a condition–

pβ = ⟨p
∼

∗(γ) | γ < β⟩⌢⟨p
∼
(γ) | β ≤ γ < κ⟩

so that pβ ↾ β ⊩ ¬σβ, where

σβ ≡ ∃t ∈ Pκ \ β, t ≥∗ p \ β∃r ∈ G∼β r⌢t ∈ D.

For the first stage, we have–

σ1 ≡ ∃t ∈ Pκ \ 1, t ≥∗ p \ 1∃r ∈ G∼1 r⌢t ∈ D.

Q0 satisfies the Prikry condition, so there is p∗0 ≥∗ p0 which decides σ1. If p∗0 ⊩ σ1, then

p∗0
⌢ t∼ will be as desired. So, assume that p∗0 ⊩ ¬σ1, and continue.

The successor step is similar to the first stage above.

For limit steps, suppose that β is a limit ordinal. Let us show that–

pβ = ⟨p
∼

∗(γ) | γ < β⟩⌢⟨p
∼
(γ) | β ≤ γ < κ⟩

is as desired, i.e. pβ ↾ β ⊩ ¬σβ. Suppose otherwise, then there is r = ⟨ r∼(γ) | γ < β⟩ ∈ Pβ

such that r ≥ pβ ↾ β and r ⊩ σβ. Extend it, if necessary, so that for some t∼

r ⊩ t∼ ≥∗ p \ β and r⌢ t∼ ∈ D.

By the definition of order on Pβ, there is β∗ < β such that for every γ, β∗ ≤ γ < β,
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r↾γ ⊩ r∼(γ) ≥∗
γ p
∼

∗(γ).

Consider a Pβ∗-name

t∼
′ = ⟨ r∼(γ) | β∗ ≤ γ < β⟩⌢ t∼.

Then

r ↾ β∗ ⊩ t′∼ ≥∗ p \ β∗ and r ↾ β∗⌢ t∼
′ ∈ D.

But r ↾ β∗ ≥ pβ
∗
↾ β∗ ⊩ ¬σβ∗ . Contradiction.

This completes the construction.

Consider p(α) = ⟨p
∼

∗(γ) | γ < κ⟩. Pick some r ≥ pκ in D. Now we obtain a contradiction as

in the limit stage above.

□

Assuming that κ is measurable in the ground model, a stronger version of Lemma 2.3

can be proved:

Lemma 2.4 Assume that κ is measurable in V and U is a normal measure on κ. Let

D ⊆ Pκ be a dense open and let p ∈ Pκ. Then there are α < κ and q ≥∗ p, such that

q ↾ α = p ↾ α, and for every r ∈ Pα, r ≥Pα p ↾ α there is r′ ≥Pα r such that r′⌢q \ α ∈ D.

Moreover, for every X ∈ U , α, q above can be chosen such that α ∈ X.

Proof. Let σβ be as in lemma 2.3. If there exists β ∈ X such that p ↾ β ⊩ σβ, we are done.

Assume otherwise. For every β ∈ X there exists rβ ≥ p ↾ β such that rβ ⊩ ¬σβ. For

each such limit β, there exists β′ < β such that rβ ↾ β′ ⊩ rβ \ β′ ≥∗ p ↾ [β′, β). The function

β 7→ β′ is regressive, and thus there exist a set A ∈ U and β∗ < κ such that for every β ∈ A,

rβ ↾ β∗ ⊩ rβ \ β∗ ≥∗ p ↾ [β∗, β). Since |Pβ∗| < κ, we can shrink A ∈ U further, and assume

that there exists r∗ ∈ Pβ∗ , such that, for every β ∈ A, rβ ↾ β∗ = r∗.

Then r∗ has the following property: for every β ∈ A there exists s(β) ≥∗ p ↾ [β∗, β) such

that r∗⌢s(β) ⊩ ¬σβ. Now apply ineffability: we can find A∗ ⊆ A, A∗ ∈ U , and a Pβ∗-name

for a condition s∗ = [β 7→ s(β)]U ∈ P \β∗, such that r∗ ⊩ s∗ ≥∗ p\β∗, and, for every β ∈ A∗,

r∗⌢s∗ ↾ [β∗, β) = r∗⌢s(β) ⊩ ¬σβ.

Finally, pick some q ≥ r∗⌢s∗, q ∈ D. Let β ∈ A∗ \ β∗ + 1 be such that–

q ↾ β ⊩ q \ β ≥∗ s∗ \ β
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and in particular,

q ↾ β ⊩ q \ β ≥∗ p \ β, and q ↾ β⌢q \ β ∈ D

and thus q ↾ β ⊩ σβ; however, since β ∈ A∗,

q ↾ β ≥ r∗⌢s∗ ↾ [β∗, β) ⊩ ¬σβ

which is a contradiction.

□

Lemma 2.5 Let p ∈ Pκ be a condition, and assume that ζ
∼

a Pκ-name for an ordinal. Then

there exists q ≥∗ p and a set of ordinals A ∈ V with |A| < κ such that q ⊩ ζ
∼

∈ A.

Proof. Apply lemma 2.3 on the dense open set D of conditions which decide the value of

ζ
∼
. Then there exists q ≥∗ p and α < κ such that, for every r ≥ q ↾ α there exists r′ ≥ r

such that r′⌢q \ α ∥ ζ
∼
. Let A ∈ V be the set of all possible values of ζ

∼
as decided by some

extension of q. We argue that |A| < κ.

Assume that q′ ≥ q decides the value of ζ
∼
. Denote r = q′ ↾ α. Then there exists r′ ≥ r

such that r′⌢q \ α ∥ ζ
∼
. So both conditions q′, r′⌢q \ α decide the value of ζ

∼
; but those

conditions are compatible, since r′ ≥ p′ ↾ α, and q′\α ≥ q\α. This shows that every element

of A can be realized as the decided value of ζ
∼

by a condition of the form r⌢q \ α for some

r ∈ Pα. But the cardinality of the set of such conditions is strictly below κ, since |Pα| < κ,

by the assumption on the cardinality of the forcings Q
∼β for β < κ.

□

Corollary 2.6 Let Gκ ⊆ Pκ. Then κ remains inaccessible in V [Gκ].

Proof. We concentrate on the proof that κ remains a regular cardinal after forcing with Pκ,

since it’s routine to verify that it remains strong limit.

Assume that f
∼

is a Pκ-name for a function from some ordinal τ < κ to κ. Let p ∈ Pκ be

a condition which forces this. We argue that there exists p∗ ≥ p and some µ∗ < κ, such that

p∗ ⊩ rng(f
∼
) ⊆ µ∗.

Let Gτ+1 ⊆ Pτ+1 be an arbitrary generic extension containing p ↾ τ + 1. We prove that,

in V [Gτ+1], there exist q ≥∗ p \ τ + 1 and µ < κ such that q ⊩ rng(f
∼
) ⊆ µ. Once we prove

that, we are done: let q
∼
, µ
∼

be Pτ+1-names which are forced by p ↾ τ + 1 to have the above

properties. Let µ∗ < κ be an upper bound on the set of possible values of µ
∼
, as forced by

extensions of p ↾ τ +1. Since |Pτ+1| < κ, this set is bounded in κ, and thus there exists such

an upper bound below κ. Then p∗ = p ↾ τ + 1⌢ q
∼

⊩ rng(f
∼
) ⊆ µ∗, as desired.
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Work in V [Gτ+1]. Apply lemma 2.5 over and over to construct a ≤∗-increasing sequence

of conditions ⟨pξ : ξ ≤ τ⟩ in Pκ \ τ + 1, such that, for each ξ < τ there exists some µξ < κ

such that pξ ⊩ f
∼
(ξ) < µξ. Note that in limit steps (including the last step) we may take

upper bound, since the direct extension order of Pκ \ τ + 1 is more than τ -closed. Finally,

q = pτ forces that the image of f
∼

is bounded by µ =
⋃

ξ<τ µξ < κ.

□

Theorem 2.7 Let S ⊆ κ be a stationary set consisting of singulars. Let Gκ ⊆ Pκ. Then S

remains stationary in V [Gκ].

Proof. Let C ⊆ κ be a club in V [G]. Let p ∈ G be condition which forces this.

Work in V . Pick an elementary submodel M ⪯ Hχ such that:

1. |M | = δ < κ,

2. M ∩ κ = δ,

3. δ ∈ S (in particular, δ is singular),

4. cof(δ)>M ⊆ M ,

5. κ, Pκ, S, C∼, p ∈ M .

Pick a cofinal sequence in δ, ⟨δi | i < cof(δ)⟩.
Apply lemma 2.5. Construct (in V ) a ≤∗-increasing sequence of conditions in the forcing

Pκ \ cof(δ), ⟨pξ : ξ ≤ cof(δ)⟩, such that each condition pξ belongs to M .

We first construct p0 ≥∗ p in M , such that p0 ↾ cof(δ) + 1 = p ↾ cof(δ) + 1, and, using

Lemma 2.5,

p0 ↾ cof(δ) + 1 ⊩ ∃α < κ, p0 \ cof δ + 1 ⊩ min (C∼ \ δ0) < α.

Let α0 be the least upper bound of the set of all possible values for the Pcof(δ)+1-name α∼.

Then p0 ⊩ min (C∼ \ δ0) < α0. Note that by elementarity, α0 < δ.

Assuming that i < cof(δ) and pi, αi have been defined and both are in M , and let us

define pi+1, αi+1. Let pi+1 ≥∗ pi in M be such that pi+1 ↾ cof(δ) + 1 = p ↾ cof(δ) + 1, and

there exists αi+1 < κ, pi+1 ⊩ min (C∼ \max{δi+1, αi}) < αi+1. Take αi+1 to be minimal with

this property. Then αi+1 < δ.
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For the limit step, assume that j < cof(δ) is limit and ⟨pi : i < j⟩, ⟨αi : i < j⟩ have been

constructed. Use the fact that M is closed under < cof δ-sequences to find an upper bound

q ∈ M of ⟨pi : i < j⟩, such that q ↾ cof(δ) + 1 = p ↾ cof(δ) + 1. We used here the fact that

Pκ \cof(δ)+1 is cof(δ)-closed. Finally, let pj ≥∗ q be chosen in M such that pj ↾ cof(δ)+1 =

p ↾ cof(δ) + 1 and, for some αj < κ, pj ⊩ min (C∼ \max{δj, sup{αi : i < j}}) < αj. We used

here again the fact that M is closed under < cof(δ)-sequences and thus ⟨αi : i < j⟩ ∈ M .

Let αj be the minimal with the above property. Then αj ∈ M .

This concludes the inductive construction. In the final limit step, take, in V , an upper

bound q∗ for all the conditions ⟨pi : i < cof(δ)⟩. Then q∗ ⊩ δ =
⋃

i<cof(δ) αi ∈ C∼, since C is

forced by p to be closed. Thus δ ∈ C ∩ S, as desired.

□

Remark 2.8 Basically the same argument works for κ replaced by κ+.

Now let us try to extend the theorem to S’s which consists of regular cardinals. We deal

with three supports separately.

First point out the following:

Theorem 2.9 Suppose that the Easton support is used in Pκ. Assume that S ⊆ κ is sta-

tionary. Then S remains stationary in V [G].

Proof. If κ is a Mahlo cardinal, the Easton support iteration is κ-c.c. and thus preserves

stationary subsets of κ. Thus, we can assume that κ is not Mahlo. In this case, there exists

a club C ⊆ κ of singular cardinals. Thus, by shrinking S we can assume that it consists of

singulars. Then, Theorem 2.7 applies.

□

Turn to the full support.

Theorem 2.10 Suppose that Pκ is the full support iteration.

Assume that for every β < κ, for every p, q, r ∈ Q
∼α, if p, q ≥∗ r, then there is t ∈ Q

∼α such

that t ≥∗ p, q.

Let S ⊆ κ be a stationary such that, for every α ∈ S, ⟨Q
∼α,≤∗

Qα
⟩ is forced (by the weakest

condition of Pα) to be |α|+−complete.

Then S remains stationary in V [G].

Proof. Suppose otherwise. Pick some p ∈ Pκ and a name C∼ such that

p ⊩ C∼ is a club in κ and C∼ ∩ S = ∅.
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Pick now M ⪯ Hχ and δ ∈ S, as in Theorem 2.7.

It is enough to find a condition r ≥ p which forces “C∼ is unbounded in δ” in order to derive

a contradiction.

Suppose that there is no such r. Let Gδ ⊆ Pδ be a generic with p ↾ δ ∈ Gδ. Then, in V [Gδ],

p \ δ ⊩ C∼Gδ
∩ δ is bounded in δ.

We have δ ∈ S, so, by the assumption of the theorem, Q
∼δ is δ

+−complete, and hence, Pκ/Gδ

is δ+−complete. Then there are p′ ∈ Pκ/Gδ, p
′ ≥∗ p \ δ and ρ < δ such that

p′ ⊩ C∼Gδ
∩ δ ⊆ ρ.

Pick some t ∈ Gδ, t ≥ p ↾ δ such that

t⌢ p
∼

′ ⊩ C∼Gδ
∩ δ ⊆ ρ.

Since t ≥ p ↾ δ, there exists γ < δ such that t = t ↾ γ⌢t \ γ and t \ γ ≥∗ p ↾ [γ, δ). In

particular, t ↾ γ ⊩ t \ γ⌢ p
∼

′ ≥∗ p \ γ.
Now work in M above the condition p. Note that γ, ρ above are below δ and thus are in M .

Also p, C∼ ∈ M , and recall that

p ⊩ C∼ is a club in κ

Let ζ
∼

∈ M be a Pκ-name such that p ⊩ ζ
∼

= min(C∼ \ ρ̌ + 1). By Lemma 2.5, we can find

(in M) a Pγ-name for a condition q
∼1 ≥∗ p \ γ such that p ↾ γ ⊩ ∃µ < κ q

∼1 ⊩ ζ
∼

< µ. Let

µ
∼

∈ M be a Pγ-name such that p ↾ γ ⊩ q
∼1 ⊩ ζ

∼
< µ

∼
. In M , let µ∗ be the supremum of all

possible values of µ
∼
, as forced by extensions of p ↾ γ. Then µ∗ < δ (since µ∗ ∈ M ∩ κ). By

elementarity, p ↾ γ⌢q1 ⊩ ζ
∼

< µ∗ holds in V as well.

Finally, let p∗ ∈ Pκ be a condition such that q∗ ↾ γ = t ↾ γ and p∗ \ γ direct extends both

the conditions t \ γ⌢ p
∼

′, q
∼1. Note that, since t \ γ⌢ p

∼
′ and q

∼1 direct extend p \ γ, the extra

assumption of the theorem allows us to construct such p∗.

Then on the one hand, p∗ forces that C∼ ∩ δ ⊆ ρ; on the other hand, it forces that

min (C∼ \ ρ+ 1) ≤ µ∗ < δ. A contradiction.

□

Turn now to the non-stationary support.

Theorem 2.11 Assume that the non-stationary support is used. Let S ⊆ κ be stationary.

Then S is stationary in V [Gκ].
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Proof. Let C∼ be a Pκ−name and p ∈ Pκ, p ⊩ C∼ is a club disjoint to S.

We construct:

1. ≤∗-increasing sequence of conditions ⟨pi : i < κ⟩,

2. decreasing sequence of clubs ⟨Ci : i < κ⟩, each is disjoint to the support of pi,

3. increasing continuous sequences of ordinals ⟨νi : i < κ⟩, ⟨αi : i < κ⟩.

The sequence of conditions will be a fusion sequence, in the sense that, for every i < j,

pi ≤∗ pj and pj ↾ νi = pi ↾ νi.

Let p0 = p and α0 = 0. Pick a club C0 disjoint to supp(p0). Let ν0 = min(C0).

Let Gν0 ⊆ Pν0 be a generic with p0 ↾ ν0 ∈ Gν0 . Apply Lemma 2.5, inside V [Gν0 ], and find

p′1 ∈ Pκ/Gν0 , p
′
1 ≥∗ p0 \ ν0 and A′

1 ⊆ κ, |A′
1| < κ such that p′1 ⊩ min(C∼) ∈ A′

1.

Now back to V , we have |Pν0| < κ, hence there is A1, |A1| < κ such that

p1 = p0 ↾ ν
⌢
0 p
∼

′
1 ⊩ min(C∼) ∈ A1.

Set α1 = sup(A1).

Next, we pick a club C1 ⊆ C0 disjoint to supp(p1). Let ν1 = min(C1 \ ν0 + 1).

Let Gν1 ⊆ Pν1 be a generic with p1 ↾ ν1 ∈ Gν1 . Apply Lemma 2.5, inside V [Gν1 ], and find

p′2 ∈ Pκ/Gν1 , p
′
2 ≥∗ p1 \ ν1 and A′

2 ⊆ κ, |A′
2| < κ such that p′2 ⊩ min(C∼ \ α1 + 1) ∈ A′

1.

Now back to V , we have |Pν1| < κ, hence there is A2, |A2| < κ such that

p2 = p1 ↾ ν1
⌢ p
∼

′
2 ⊩ min(C∼ \ α1 + 1) ∈ A2.

Set α2 = sup(A2).

We do the same at each successor stage i < κ of the construction.

Suppose now that i < κ is limit. Set αi =
⋃

j<i αj, νi =
⋃

j<i νj and let pi be the coordi-

nateswise union of ⟨pj : j < i⟩. Note that the facts that ⟨pj : j < i⟩ is a fusion sequence,

νi /∈ Cj for all j < i, and Pκ\Gνi+1 is more than |i|-closed, ensure that pi ∈ Pκ is a legitimate

condition. Let Ci =
⋂

j<iCj. Pick νi+1 = min(Ci) \ νi + 1. Continue as above.

Finally, let pκ be the coordinateswise union of ⟨pi : i < κ⟩. It is in Pκ since for every

i < j, pi ≤∗ pj and pj ↾ νi = pi ↾ νi and ∆i<κCi is disjoint to its support.

Now,

pκ ⊩ {αi | i is limit} ⊆ C∼.

But {αi | i is limit} is a club in V , and so, S ∩ {αi | i is limit} ≠ ∅. Contradiction.
□
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Remark 2.12 A similar argument can be used to show that non-stationary support it-

erations preserve stationary subsets of κ+.6 The main difference is the use of elementary

substructures. We sketch the argument below.

Let S ⊆ κ+ be stationary. Assume that p ∈ Pκ forces that C∼ is a club in κ+ disjoint from

S. Pick an elementary substructure M ⪯ Hχ (for χ high enough), such that |M | = κ,

γ := sup(M ∩ κ+) ∈ S, M is closed under less-than cf(γ)-sequences of its elements, and

M contains all the relevant parameters as elements (namely, κ, Pκ, S, p, C∼ ∈ M). We

assume cf(γ) = κ and fix ⟨γi : i < κ⟩ cofinal in γ (the case where cf(γ) < κ is similar, even

simpler). Construct increasing sequences ⟨pi : i < κ⟩, ⟨Ci : i < κ⟩, ⟨νi : i < κ⟩ as before, and
an increasing, continuous sequence ⟨αi : i < κ⟩ cofinal in γ, that dominates ⟨γi : i < κ⟩.
The construction is internal to M , in the sense that each strict initial segment of the above

sequences belongs to M (but the entire sequences are external to M). The construction is

identical to the one from the proof of Theorem 2.11, with the minor adaption that for each

i < κ, γi ≤ αi and

pi+1 ⊩ min(C∼ \ αi + 1) ≤ αi+1.

At the final limit step, let pκ be the coordinatewise union of ⟨pi : i < κ⟩. Then pκ ⊩ γ ∈ C∼∩S,
which is a contradiction.

We proceed and discuss preservation of cardinals after forcing with Pκ with various sup-

ports. In the Easton support case, |Pκ| = κ, and so κ+ is preserved. By Corollary 2.6

in [1], κ+ is preserved after non-stationary support iterations. Let us consider full support

iterations. Note that the Magidor iteration of Prikry forcings (from [11]) satisfies κ+−c.c..

This could be generalized to a Magidor iteration of arbitrary Prikry-type forcings:

Proposition 2.13 Suppose that for every β < κ, for every s, t, r ∈ Q
∼β, if s ≤∗

Q∼β
t, r, then

there is e ∈ Q
∼β, e ≥∗

Q∼β
t, r. Then Pκ satisfies κ+−c.c.

In general it turns out that κ+ may be collapsed with full support iteration.

Proposition 2.14 Suppose that κ is a measurable cardinal. Let Pκ be the full support iter-

ation of Col(α, α+) = {f | f ∈ ξα+, ξ < α}, for every regular α < κ. Then κ+ is collapsed

in V Pκ.

Proof. Let U be a normal measure over κ.

We start with the following claim:

6The fact that κ+ itself is preserved as a cardinal is also required here, and it appears in [1], Corollary
2.6; we will discuss preservation of κ+ in more detail in the rest of the subsection.
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Claim 1 Let p = ⟨p
∼
(β) | β < κ⟩ ∈ Pκ. Then there are A∗ ∈ U , τ ∗ < κ and p∗ ≥ p such

that p∗ ↾ β ⊩ dom(p
∼

∗(β)) = τ ∗, for every β ∈ A∗.

Proof. For every regular β < κ there are sβ ∈ Pβ, sβ ≥ p ↾ β and τ 0β < β such that

sβ ⊩ dom(p
∼
(β)) = τ 0β .

Find A′
0 ∈ U and p0 ∈ Pκ such that p0 ↾ β = sβ, for every β ∈ A′

0. For example, take

p0 = [β 7→ sβ]U .

Then we consider a regressive function β 7→ τ 0β on A′
0. Find A0 ⊆ A′

0, A0 ∈ U and τ 0 < κ

such that τ 0β = τ 0, for every β ∈ A0.

Repeat the process with p0 replacing p and find A1 ⊆ A0, A1 ∈ U , p1 and τ 1 such that

p1 ↾ β ⊩ dom(p
∼0(β)) = τ 1.

Continue by induction. Let A∗ =
⋂

n<ω An and p∗ be the coordinatewise union of pn’s. Set

τ ∗ =
⋃

n<ω τ
n.

Then p∗ ↾ β ⊩ dom(p
∼

∗(β)) = τ ∗, for every β ∈ A∗, will be as desired.

□ of the claim.

For every τ < κ, define a maximal antichain Aτ in Pκ. Proceed as follows.

Let us pick functions ⟨hγ | γ < κ+⟩ such that dom(hγ) ∈ U , for every α ∈ dom(hγ), hγ(α) <

α+ and [hγ]U = γ, for example κ+−canonical functions will do the job.

Fix τ < κ. Let Aτ be a maximal antichain in Pκ of cardinality κ+ which consists of p ∈ Pκ

such that:

(*)if for some B ∈ U and γ < κ+, the condition tBγ = ⟨tBγ(α) | α < κ⟩ is compatible

with p, then, for some B′ ∈ U , p ≥ tB′γ,

where, for E ∈ U , tEγ(α) = 0α, unless α ∈ E∩dom(hγ)\τ+1, and if α ∈ E∩dom(hγ)\τ+1,

then tEγ(α) = {(τ, hγ(α))}, i.e. the value of the generic function for α at τ is hγ(α).

Let ⟨pτi | i < κ+⟩ be an enumeration of Aτ .

Let G ⊆ Pκ be a generic. Define F : κ → (κ+)V by setting F (τ) = i iff pτi ∈ G.

We claim that such F is onto.

Suppose otherwise. Pick some p ∈ G and η < κ+ such that p ⊩ rng(F∼) ⊆ η.

Apply Claim 1. Let A∗ ∈ U , τ ∗ < κ and p∗ ≥ p be as in the conclusion of the claim.

Now for every γ < κ+, we can extend p∗ to a condition pγ by adding a pair (τ ∗, hγ(α)) to

p∗(α), for every α ∈ A∗ ∩ dom(hγ) \ γ+1. Note that if γ ̸= γ′, then pγ, pγ
′
are incompatible.

So, the set {pγ | γ < κ+} consists of κ+−many incompatible conditions.

Then, each of pγ’s must be compatible with a member of Aτ∗ with index below η. Hence,

there is i∗ < η such that pτ
∗

i∗ is compatible with κ+−many pγ’s. Pick two of them γ ̸= γ′.

By (*), then pτ
∗

i∗ ≥ tBγ, tB′γ′ , for some B,B′ ∈ U . However, γ ̸= γ′ implies that there is
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α ∈ B ∩B′, such that hγ(α) ̸= hγ′(α), and this is impossible due to the compatibility.

Contradiction.

□.

We conjecture that the measurability assumption can be much weakened. However, the

following positive result can be proved:

Proposition 2.15 Suppose that there is a club C ⊆ κ such that for every α ∈ C, ⟨Q
∼α,≤∗

Q∼α
⟩

is forced to be α+−closed. Then Pκ preserves κ+.

In particular, if κ is not a Mahlo cardinal, then Pκ preserves κ+.

Proof. Let p ∈ Pκ and f
∼

be a name such that

p ⊩ f
∼

: κ → κ+.

Fix a club C such that for every α ∈ C, ⟨Q
∼α,≤∗

Q∼α
⟩ is forced to be α+−closed. Assume

also that for every α ∈ C, for every β < α, |Pβ| < α. Let ⟨αi | i < κ⟩ be an increasing

continuous enumeration of C. Apply Lemma 2.5 and find p0 ≥∗ p, p0 ↾ α0 = p ↾ α0 and

η0 < κ+ such that p0 ⊩ f
∼
(0) < η0.

Continue by induction and define a ≤∗ −increasing sequence ⟨pi | i < κ⟩ and sequence

⟨ηi | i < κ⟩ of ordinals below κ+ such that

1. pi ⊩ f
∼
(i) < ηi,

2. for every i < j, pj ↾ αi = pi ↾ αi,

There is no problem at limit stages i, since ⟨Pκ \ αi,≤∗ ⟩ is α+
i −closed since αi ∈ C.

The second item insures that there is p∗ ∈ Pκ such that p∗ ≥∗ pi, for every i < κ. Then

p∗ ⊩ rng(f
∼
) ⊆

⋃
i<κ

ηi.

□

3 Non-stationary support iterations

We assume GCH throughout as before. Let κ be an inaccessible cardinal.

Let ⟨Pα, Q∼β : α ≤ κ, β < κ⟩ be a non-stationary support iteration of Prikry-type forcings,

with the properties stated in the introduction.
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Let I be a stationary subset of κ which consists of singular cardinals µ such that for

every γ < µ, |Pγ| < µ.

Assume that-

If α ∈ I, then ⊩Pα ⟨Pκ \ α,≤∗⟩ is α++-closed.

Note that for a singular cardinal α, we have ⊩Pα ⟨Pκ \α,≤∗⟩ is α+-closed. We will need a

slightly more closure. A typical situation is where κ is Mahlo, Qα is trivial at every accessible

α and each forcing Q
∼α has cardinality below the least inaccessible above α.

Theorem 3.1 Pκ does not add fresh unbounded subsets to κ.

Proof. Recall the following fusion lemma for the non-stationary support iteration of Prikry

forcings7:

Lemma 3.2 Let p ∈ Pκ. For every β < κ, let F (β) be a Pβ-name for a ≤∗-dense open

subset of P \ β above p \ β, and assume that this is forced by p ↾ β. Then there exist p∗ ≥∗ p

and a club C ⊆ κ such that for every singular β ∈ C, p∗ ↾ β ⊩ p∗ \ β ∈ F (β).

Let G ⊆ Pκ be generic over V , and assume for contradiction that there exists a function

f ∈ 2κ which is the characteristic function of a fresh subset of κ. Let f
∼

be a Pκ-name for

it, and assume that this is forced by some condition in G. For simplicity, assume that this

is the weakest condition.

Let ζ ∈ κ ∩ I be the least ordinal for which a new subset is added in the extension from

V to V [G]. Such ζ exists, since the forcings Qα (for α < κ) have cardinality below κ, and

at least one of them is non-trivial.

Note that ζ ∈ κ∩ I, ⟨Pκ \ ζ,≤∗ ⟩ is ζ++-closed. Pick a condition q ∈ Pζ which forces that

a new subset is added to ζ. For simplicity, assume that the weakest condition in Pζ forces

this (else, work above a condition in Pκ whose restriction to Pζ equals q).

We divide into two cases:

Case 1.8 There exists µ ∈ (ζ, κ) ∩ I and a condition p∗ ∈ Pµ which forces that the

following property holds:

∃p ∈ Gµ ∃s ∈ Pκ \ µ∀r ≥∗ s ∃ξ < κ ∃r0, r1 ≥∗ r,

V ⊨ (p⌢r0 ∥ f
∼

↾ ξ, p⌢r1 ∥ f
∼

↾ ξ) , and the decisions are different.

7The fusion property for non-stationary support iterations is due to Friedman and Magidor [2]. A version
suitable for iterations of Prikry-type forcings appeared in [1]. The proof is basically given in lemma 3.3 in
[4].

8It basically repeats those of 4.11, [4].
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(here, Gµ denotes the canonical name for the generic set for Pµ). By extending p∗, we can

decide the value of p in the statement above, and thus assume that p∗ ≥ p. Let s∼ be a

Pµ-name for s from the above property, and assume that this is forced by p∗.

Let us apply the same methods as in the main lemma in [7]. We construct, in V , a

binary tree of conditions, ⟨⟨p∗, s∼σ⟩ : σ ∈ µ>2⟩ and a tree of functions ⟨bσ : σ ∈ µ>2⟩ such that

s∼∅ = s∼, and for every σ ∈ µ>2:

1. ∀i < 2, ⟨p∗, s∼σ⌢⟨i⟩⟩ ∥ f
∼

↾ lh
(
bσ⌢⟨i⟩

)
= bσ⌢⟨i⟩.

2. bσ⌢⟨0⟩ ⊥ bσ⌢⟨1⟩.

3. ∀i < 2, p∗ ⊩ s∼σ⌢⟨i⟩ ≥∗ sσ.

4. If lh(σ) is limit, then p∗ forces that s∼σ is an upper bound, with respect to the direct

extension order, of ⟨ s∼σ↾ξ : ξ < lh(σ)⟩.

5. bσ is an end extension of bσ↾ξ for every ξ < lh(σ).

Now assume that g ⊆ Pµ is generic over V with p∗ ∈ g. In V [g], let h ∈ 2<µ be the

characteristic function of a new subset of µ (such a new subset exists because µ is above ζ).

h defines a branch through the binary tree, ⟨⟨p∗, s∼h↾ξ⟩ : ξ < µ⟩. Since ⟨ s∼h↾ξ : ξ < µ⟩ form

a ≤∗-increasing sequence, there exists an upper bound s∗ ∈ P \ µ, which extends all the

conditions in the sequence. Thus, there exists an upper bound for the branch, of the form

⟨p∗, s∼
∗⟩. It forces that–

b =
⋃
ξ<µ

bh↾ξ

is an initial segment of f
∼
. We argue that this must be a strict initial segment of f . Indeed,

otherwise, (cof(κ))V [Gµ] ≤ µ. But, since κ is inaccessible, Gµ ⊆ Pµ is a forcing whose

cardinality is strictly below κ, so it preserves cofinalities greater of equal to κ.

Therefore, b is a strict initial segment of f , and thus b ∈ V . So h can be defined, in V ,

using the binary tree and the set b. This is a contradiction to the choice of h.

Case 2. For every µ ∈ (ζ, κ) ∩ I, every condition in Pµ forces that–

∀p ∈ G∼µ ∀s ∈ Pκ \ µ∃r ≥∗ s ∀ξ < κ ∀r0, r1 ≥∗ r,

V ⊨ If p⌢r0 ∥ f
∼

↾ ξ and p⌢r1 ∥ f
∼

↾ ξ then the decisions are the same.

Define for every µ < κ

e (µ) = {r ∈ Pκ \ µ : ∀p ∈ Gµ ∀ξ < κ ∀r0, r1 ≥∗ r,

V ⊨ If p⌢r0 ∥ f
∼

↾ ξ and p⌢r1 ∥ f
∼

↾ ξ then the decisions are the same.}
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Claim 2 Suppose that µ ∈ (ζ, κ) ∩ I. Then e(µ) is a dense open in ⟨Pκ \ µ,≤∗ ⟩.9

Proof. Just note that |Gµ| ≤ µ+ and ⟨Pκ \ µ,≤∗ ⟩ is µ++−closed.

□ of the claim.

Given µ ∈ (ζ, κ) ∩ I as above, the following set is also forced to be ≤∗-dense open in

P \ µ:

d (µ) = {r ∈ P \ µ : ∃g ∈ 2µ, r ⊩ f
∼

↾ µ = g}.

The ≤∗-density of d(µ) ⊆ P \ µ follows as well from the fact that the direct extension order

of P \ µ is more than µ-closed.

We can now apply the standard fusion argument 3.2. There exists p ∈ Pκ and a club

C ⊆ κ such that min(C) > ζ, and, for every µ ∈ C ∩ I,

p ↾ µ ⊩ p \ µ ∈ d(µ) ∩ e(µ).

For each µ ∈ C ∩ I, there exists a condition in G of the form qµ
⌢p \ µ, where qµ ∈ Pµ,

which decides the value of f
∼

↾ µ. The reason is that p ↾ µ forces that p \ µ is in d(µ), and

thus the value of f
∼

↾ µ is decided by the forcing Pµ.

For each such µ, qµ is an extension of p ↾ µ, and thus there exists a finite set bµ ⊆ µ such

that at every δ ∈ µ \ bµ, qµ(δ) direct extends p(δ) (as forced by qµ ↾ δ).

The function µ 7→ max bµ is a regressive function in V [G], and its domain is the set

C ∩ I. C ∩ I is stationary in V since I is assumed to be stationary. By theorem 2.2, it is

also stationary in V [G]. Since κ is still regular in V [G], we can find an unbounded subset

S ⊆ κ and an ordinal µ∗ < κ such that for every µ ∈ S, bµ ⊆ µ∗. By increasing µ∗, we can

assume that it belongs to C ∩ I.

Now, shrink S further to stabilize the function µ 7→ qµ ↾ µ∗. This is possible since S is

unbounded in κ, and qµ ↾ µ∗ is a condition in Pµ∗ which has a small cardinality (and, again,

κ is inaccessible in V [G]).

So we can assume that there exists a condition q∗ ∈ Pµ∗ , such that for every µ ∈ S, there

exists some direct extension rµ ∈ P \ µ∗ of p \ µ∗, such that–

q∗⌢rµ ∥ f
∼

↾ µ

and q∗⌢rµ ∈ G.

9It is the only place in the proof where µ++−completeness is used.
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Recall that µ∗ ∈ C ∩ I and the condition p obtained by fusion above also satisfies that

p ↾ µ∗ ⊩ p \ µ∗ ∈ e(µ∗). Since q∗ ≥ p ↾ µ∗, the condition q∗ forces that, for every ξ < κ, any

pair of direct extensions of p \ µ∗ which decide f
∼

↾ ξ, decide this initial segment the same

way.

It follows that q∗⌢p \ µ∗ decides f
∼

entirely, and forces it to be the following function of

V :

h =
⋃

µ∈κ\µ∗

{g ∈ 2µ : there exists a Pµ∗-name for an extension r∼ ≥∗ p \ µ∗,

such that q∗⌢r ⊩ f
∼

↾ µ = g}

which is a contradiction. □

Remark 3.3 Lemma 3.2 implies that V [G] ⊨ 2κ = κ+. Indeed, assume that A is a subset

of κ in V [G]. Let A∼ be a Pκ-name for it. For every singular β < κ, define in V Pβ the set–

F (β) = {q ∈ Pκ \ β : ∃Aβ ⊆ β, q ⊩ A∼ ∩ β = Aβ}.

Note that β is singular and thus F (β) is ≤∗-dense open. Let p∗ ∈ G and C ⊆ κ be such

that for every singular β ∈ C, p∗ ↾ β ⊩ p∗ \ β ∈ F (β). Then there exists a Pβ-name A∼β for

a subset of β, such that p∗ ⊩ A∼ ∩ β = (A∼β)G∼↾Pβ
. Then A = (A∼)G can be computed in V [G]

from the sequence ⟨A∼β : β ∈ C⟩. By using canonical names for bounded subsets of κ, and

by GCH in V , there are at most κ+ such sequences. So there are at most κ+−many subset

of κ in V [G].

The situation with higher cardinals was clarified in [4]. The following was shown basically

in [4], 4.11:

Lemma 3.4 Pκ does not add fresh unbounded subsets to κ+, or to any cardinal λ of V with

cof (λ) > κ.

Proof. The proof is a variation of the proof of theorem 3.1, and it basically appears in [4].

Assume that f
∼

is a Pκ-name for the characteristic function of a fresh unbounded subset of

λ. Divide into cases as in the proof of theorem 3.1. Case 1 remains the same. Case 2 is

simplified, since the sets d(µ) is no longer required. Indeed, in the notations of the proof of
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theorem 3.1, assume that p ∈ Pκ is a condition and C ⊆ κ is a club, such that for every

µ ∈ C ∩ I,

p ↾ µ ⊩ p \ µ ∈ e(µ)

Now, work in V [G]. For each ξ < λ, let qξ ∈ Pκ be an extension of p which decides f
∼

↾ ξ.

Let bξ ⊆ κ be a finite set such that, for every α ∈ bξ, qξ ↾α⊩ qξ(α) ≥∗ p(α). Let µξ < κ be an

upper bound on bξ. Since cof(λ) > κ in in V , the same holds true in V [G] as well (by the

same proof as in corollary 2.6). Thus, there exists µ∗ ∈ C ∩ I such that, for an unbounded

S ⊆ λ, µξ < µ∗. By shrinking S, we can assume that, for some q∗ ∈ Pµ∗ , qξ ↾µ∗= q∗. Then

q∗ satisfies that, for every ξ ∈ S, there exists a direct extension rξ ∈ P \ µ∗ of p \ µ∗, such

that q∗⌢rξ ∥ f
∼

↾ ξ. Now, as in the proof of case 2 in theorem 3.1, the condition q∗⌢p \ µ∗

forces f
∼

to be the following function of V :

h =
⋃

ξ<κ+

{g ∈ 2µ : there exists a Pµ∗-name for an extension r∼ ≥∗ p \ µ∗,

such that q∗⌢r ⊩ f
∼

↾ ξ = g}

which is a contradiction.

□

We finish with an application for iterations of Prikry-type forcings with the nonstationary

support. The referee of [10] asked if such an iteration, below a cardinal κ, can add new

measurable cardinals below κ. We show that the answer is negative10.

Theorem 3.5 Assume GCH and let κ be an inaccessible cardinal.

Let Pκ be a non-stationary support iteration of Prikry-type forcings satisfying the conditions

from the beginning of the section. Assume:

(∗) For every Mahlo cardinal α < κ which is not measurable in V , ⟨Pκ \ α,≤∗ ⟩ is

α+−closed.

Let λ be a cardinal such that ∀τ < λ(|Pτ | < λ). Let G ⊆ Pκ be generic over V . Then If λ is

measurable in V [G], it was already measurable in V .

Furthermore, if the assumption (∗) is strengthened to–

(∗∗) For every Mahlo cardinal α < κ, ⟨Pκ \ α,≤∗ ⟩ is α+−closed.

then λ is measurable in V [G] if and only if it is measurable in V .

10The answer for the same question in the full or Easton support is known to be negative, see [3].
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Proof. Assume first that (∗∗) holds and λ is a measurable cardinal in V . If λ > κ, the Levy-

Solovay Theorem [12] shows that λ is measurable in V [G]. If λ ≤ κ, standard arguments

show that λ remains measurable in V [G ↾ Pλ] (see [5]). If λ < κ, the forcing ⟨Pκ \ λ,≤∗ ⟩ is
λ+-closed, so Pκ \ λ does not add subsets to λ and λ remains measurable in V [G]. Thus, let

us concentrate on the other direction assuming (∗).
We first recall Lemma 2.1 in [4]: given a forcing notion which does not add new fresh

unbounded subsets to cardinals of V in the interval
[
κ, (2κ)V

]
= [κ, κ+], every κ-complete

ultrafilter in the generic extension extends a κ-complete ultrafilter from V . Assume now

that α is measurable in V [G], and let W ∈ V [G] be a nontrivial κ-complete ultrafilter on

α. If α ≥ κ, then by the results in this section, Pκ does not add fresh unbounded subsets to

α, α+, and thus W ∩ V ∈ V by Lemma 2.1 in [4]. Thus, assume that α < κ, and assume

that α is not measurable in V . So, α is a Mahlo cardinal in V . If the forcing ⟨Pκ \ α,≤∗ ⟩
is α++−closed, then W ∈ V [G ↾ Pα].

However we assumed only that ⟨Pκ \ α,≤∗ ⟩ is α+−closed. In this case W need not be in

V [G ↾ Pα].

Proceed then as follows. Work in V [G ↾ Pα]. Let ⟨Ai | i < α+⟩ be an enumeration of

all subsets of α (such enumeration exists by applying remark 3.3 on Pα). Define a ≤∗ −
increasing sequence of conditions ⟨pi | i < α⟩ in V [G ↾ Pα] such that for every i < α,

pi||Ai ∈ W∼ . Set W ′ = {Ai | i < α, pi ⊩ Ai ∈ W∼}. Then W ′ will be an α−complete

ultrafilter over α in V [G ↾ Pα].

Apply now 3.1 and 3.4 to Pα. It follows that no fresh subsets are added to α, α+. Now,

by Lemma 2.1 from [4], W ′ ∩ V ∈ V is a nontrivial α-complete ultrafilter over α in V . A

contradiction.

□

Remark 3.6 1. The closure assumptions made on ⟨Pκ \ α,≤∗ ⟩ are needed.

For example, start with V = L[U ], where U is a normal ultrafilter over α. Iterate

Cohen(β), β < α. Let V be this model. Then α is not a measurable in V . Force with

Cohen(α) over V . Then α will be a measurable in the extension. Here we take Qβ to

be trivial for every β < α and Qα = Cohen(α).

2. Also, the assumption ∀τ < λ(|Pτ | < λ) is necessary. Just use the previous example

(with λ = α). Q0 = Cohen(α) resurrects measurability of α.

3. Note that a measurable cardinal in V need not be such in V [G] without assuming (∗).
Just use the Prikry forcing or the iteration of such forcings.
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4 On fresh sets in the Easton support iterations

We start with an easier case of the Easton support iterations with κ being a Mahlo cardinal.

κ−c.c. of the forcing will be used to show the following:

Theorem 4.1 Suppose that κ is a Mahlo cardinal and Pκ is an Easton support iteration.

Then no fresh sets are added to κ.

Proof. Suppose otherwise. Work in V . Let A∼ be a name of such subset.

Define a tree T of possibilities as follows. Fix an increasing enumeration ⟨κξ | ξ < κ⟩ of
all inaccessible cardinals below κ.

For every ξ < κ, let

Levξ(T ) = {x ⊆ κξ | ∃p ∈ Pκ p ⊩ A∼ ∩ κξ = x}.

Let x ∈ Levα(T ), y ∈ Levβ(T ). Set x >T y iff α > β and x ∩ κβ = y.

Then ⟨T,<T ⟩ is a κ−tree, since κ is an inaccessible.

Lemma 4.2 ⟨T,<T ⟩ has a κ−branch.

Proof. Let ⟨xγ | γ < κ⟩ be an enumeration of T .

There is a club C ⊆ κ such that for every γ, δ ∈ C the following hold:

1. κγ = γ,

2. the level of xγ ≥ γ,

3. if γ < δ, then the level of xγ < δ.

For every γ ∈ C, pick pγ ∈ Pκ such that pγ ⊩ A∼ ∩ κξγ = xγ, where ξγ ≥ γ denotes the

level of xγ.

Now, κ is a Mahlo cardinal and an Easton support was used, hence there is a stationary

S ⊆ C such that for every γ, δ ∈ S, pγ and pδ are compatible.

Take any two γ < δ in S. Then xδ ∩ ξγ = xγ due to the compatibility of pγ and pδ.

So, {xγ | γ ∈ S} is a κ−branch.

□

Let now b = {xi | i < κ} be a maximal κ−branch in T . For every i < κ fix pi ∈ Pκ which

witnesses that xi ∈ T .
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By the assumption made,
⋃

i<κ xi ̸= A, since this union is in V .

Then for every i < κ, there is i′ ≥ i such that xi′ is a splitting point of T .

Denote by yi′ an immediate successor of xi′ which is not in b. Let qi′ be a condition which

witnesses that yi′ ∈ T .

Let C ⊆ κ be a club such that for every i1, i2 ∈ C, i1 < i2, we have i′1 < i2.

The next lemma provides the desired contradiction, since Pκ satisfies κ−c.c.

Lemma 4.3 The conditions {qi′ | i ∈ C} are pairwise incompatible.

Proof. Let i1 < i2 be in C. Then

qi′1 ⊩ A∼ ∩ κi′1
̸= xi′1+1.

However,

qi′2 ⊩ A∼ ∩ κi′1
= xi′1+1,

since yi′2 >T xi2 >T xi′1+1. This is possible only when qi′1 and qi′2 are incompatible.

□

Let us give an example of the Easton support iteration Pκ which adds a fresh subset,

however we give up here the assumption that |Q
∼β| < κ.

Let ⟨κβ | β < κ⟩ be an increasing sequence of measurable cardinals above an inaccessible

κ.

Let ⟨Pα, Q∼β | α ≤ κ, β < κ⟩ be an Easton support iterations of the Prikry forcings, i.e.

for each β < κ, Qβ is the Prikry forcing with a normal ultrafilter over κβ.

Let Gκ be a generic subset of Pκ. For every β < κ, let bβ be the Prikry sequence added

by Gκ to κβ.

Lemma 4.4 The set

A = {α < κ | the first element of the sequence bκα is 0}

is a fresh subset of κ.

Proof. Every initial segment of A is in V due to the support used. On the other hand A ̸∈ V ,

since every condition in the forcing Pκ should be bounded in κ, and so it can be extended

to one which forces bκα(0) = 0 or to one forcing bκα(0) ̸= 0.

□

Let us turn now to a general case, i.e. we assume only that κ is an inaccessible. Our aim

will be to prove the following:
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Theorem 4.5 Let κ be an inaccessible cardinal and ⟨Pα, Q∼β | α ≤ κ, β < κ⟩ be the Easton

support iteration of Prikry-type forcing notions. Let I be a stationary subset of κ which

consists of singular cardinals µ such that for every γ < µ, |Pγ| < µ. Suppose that for every

α ∈ I, ⊩Pα ⟨Pκ \ α,≤∗⟩ is α++-closed.

Let Gκ ⊆ Pκ be a generic. Then, in V [Gκ], there is no fresh subsets of κ.

Remark 4.6 Similar results were proved in [4] for cardinals above κ. The proof there is

based on the fact that |Pκ| = κ and it is much easier.

Proof. Let Gκ be a generic subset of Pκ.

We would like to show that there is no fresh subset of κ in V [Gκ].

Suppose otherwise. Work in V . Let A∼ be a name of such subset and let f
∼

be a name of

the characteristic function of A. Fix some p ∈ Gκ which forces this.

Let ζ < κ be an ordinal for which a new subset is added in the extension from V to V [G].

Such ζ exists, since the forcings Qα (for α < κ) have cardinality below κ, and at least one of

them is non-trivial. By increasing if necessary, we can assume that ζ is a singular cardinal.

Then ⟨Pκ \ ζ,≤∗ ⟩ is more than ζ-closed. Thus, there exists a condition q ∈ Gκ ↾ Pζ which

forces that a new subset is added to ζ. For simplicity, assume that p ↾ ζ forces this.

Given a condition r ∈ Pκ, let us denote by r(γ) its γ−th coordinate,

i.e. r = ⟨r(γ) | γ < κ⟩.
We divide into two cases as in Theorem 3.1.

Case 1. There exists µ ∈ (ζ, κ) ∩ I and a condition p∗ ∈ Pµ which forces that the

following property holds:

∃p ∈ Gµ ∃s ∈ Pκ \ µ∀r ≥∗ s ∃ξ < κ ∃r0, r1 ≥∗ r,

V ⊨ (p⌢r0 ∥ f
∼

↾ ξ, p⌢r1 ∥ f
∼

↾ ξ) , and the decisions are different.

Case 2. For every µ ∈ (ζ, κ) ∩ I, every condition in Pµ forces that–

∀p ∈ G∼µ ∀s ∈ Pκ \ µ∃r ≥∗ s ∀ξ < κ ∀r0, r1 ≥∗ r,

V ⊨ If p⌢r0 ∥ f
∼

↾ ξ and p⌢r1 ∥ f
∼

↾ ξ then the decisions are the same.

The treatment of the first case is exactly as in Theorem 3.1. Let us deal with the second

case. As in Theorem 3.1, we define for every µ < κ

e (µ) = {r ∈ Pκ \ µ : ∀p ∈ Gµ ∀ξ < κ ∀r0, r1 ≥∗ r,

V ⊨ If p⌢r0 ∥ f
∼

↾ ξ and p⌢r1 ∥ f
∼

↾ ξ then the decisions are the same.}
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By Claim 1 of 3.1, it is ≤∗ −dense open subset of Pκ \ µ, for every µ ∈ (ζ, κ) ∩ I. Again,

here is the only place where µ++−closure of the direct order on Pκ \ µ is used.

Given a generic Gκ ⊆ Pκ, p ∈ Gκ, define in V [Gκ],

S = {ξ < κ | ξ is a limit ordinal and ∃t ≥∗ p, t ∈ Gκ such that t ↾ ξ ⊩Pξ
t \ ξ||Pκ\ξA∼ ∩ ξ)}.

For every ξ ∈ S, fix some tξ ∈ Gκ such that tξ ≥∗ p and tξ ↾ ξ ⊩Pξ
tξ \ ξ||Pκ\ξA∼ ∩ ξ. So,

there is pξ ∈ G ↾ Pξ, p
ξ ≥ tξ ↾ ξ, (pξ)⌢tξ \ ξ ⊩ A∼ ∩ ξ = aξ, for some aξ ∈ V . Then there is a

finite bξ ⊆ ξ such that pξ \ bξ ≥∗ p ↾ (ξ \ bξ).
Suppose for a moment that S is stationary in V [Gκ].

Then we can find a stationary subset S ′ of S and a finite b such that for every ξ ∈ S ′, bξ = b.

Now we can freeze pξ ↾ max(b). Denote max(b) by µ∗.

Let µ ∈ I be a cardinal above µ∗.

Consider the set e(µ) defined above. It is ≤∗ −dense open subset of Pκ \ µ, in V [Gµ] above

p \ µ. In particular there is r ∈ Pκ \ µ, r ≥∗ p \ µ such that

for every p′ ∈ Gµ, for every ξ < κ and for every r0, r1 ≥∗ r

V |= If p′⌢r0||A∼ ∩ ξ and p′⌢r1||A∼ ∩ ξ then the decisions are the same.

Recall that tξ ≥∗ p and pξ \ µ∗ ≥∗ p ↾ (µ∗, ξ), for every ξ ∈ S ′. If we were able to conclude

from this that pξ \ µ ≥∗ r, then it will imply that A ∈ V . However it need not be the case

since the support of r may be bigger than those of p \ µ and incompatibility may occur on

coordinates outside of supp(p).

Let us argue that it is possible to overcome this obstacle.

Work in V . Set p0 = p. Use Lemma 2.5 to find q ≥∗ p and µ0 ≥ sup(supp(p)), µ0 ∈ I such

that q ⊩ µ
∼

∗ ≤ µ0.

Then, we use the density of e(µ0) to find r0 ≥∗ q \ µ0 such that

q ↾ µ0 ⊩Pµ0
r0 ∈ e(µ0).

Set p1 = q ↾ µ0
⌢r0.

Next, we run the argument above with p = p0 replaced by p1. Again, using Lemma 2.5 find

q1 ≥∗ p1 and µ1 ≥ sup(supp(p1)), µ0 + 1,µ1 ∈ I such that q1 ⊩ µ
∼

∗ ≤ µ1, where µ∗ is now

defined using p1 instead of p.

Then, use the density of e(µ1) to find r1 ≥∗ q1 \ µ1 such that

q1 ↾ µ1 ⊩Pµ1
r1 ∈ e(µ1).
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Set p2 = q ↾ µ1
⌢r1.

Continue by induction and define pn, qn, rn, µn, for every n < ω.

Finally set µω =
⋃

n<ω µn and pω =
⋃

n<ω pn = qω =
⋃

n<ω qn. Then, for every n < ω,

pω ↾ µn ⊩ pω \ µn ∈ e(µn),

since pω \ µn ≥∗ rn ∈ e(µn) and e(µn) is dense open. Also, sup(supp(pω)) = µω.

Pick now a generic G ⊆ Pκ with pω ∈ G. Let Spω be defined as S above only with pω

replacing p. Assuming its stationarity, define pξ ≥∗ pω, p
ξ ∈ G ↾ Pξ for ξ ∈ S ′ exactly as

above. Then there will be a stationary S ′ ⊆ S and n∗ < ω such that for every ξ ∈ S ′,

pξ ↾ (µn∗ , ξ) ≥∗ pω ↾ (µn∗ , ξ), since sup(supp(pω)) = µω and a non-direct extension is used at

finitely many places only.

Shrink S ′ further to S ′′ and stabilize the value of the function ξ 7→ pξ ↾ µ+
n∗ .

Finally, we use that pω \ µn∗ ∈ e(µn∗).

Hence, the following lemma will complete the proof. We prove it for the initial p, but

the same argument works for Spω or any Sx with x ≥ p.

Lemma 4.7 S is stationary in V [Gκ].

Proof. The argument will be similar to those of 2.2.

Suppose otherwise. Let C ⊆ κ be a club disjoint from S. Assume that p ∈ Gκ forces this,

otherwise replace it by a stronger condition doing this.

Work in V . Pick an elementary submodel M ⪯ Hχ such that

1. |M | = δ < κ,

2. M ∩ κ = δ,

3. cof(δ) < δ,

4. cof(δ)>M ⊆ M ,

5. κ, Pκ, C∼, p, I ∈ M .

Pick a cofinal in δ sequence ⟨δi | i < cof(δ)⟩ consisting of singulars and with δ0 > cof(δ).

Consider–

D0 = {r ≥ p | ∃c < κ r ⊩ c = min(C∼ \ δ0)}.

Clearly, D0 is a dense open and it belongs to M .

Apply Lemma 2.3. Then there will be α0 < κ and q0 ≥∗ p, q0 ↾ cof(δ) + 1 = p ↾ cof(δ) + 1,
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in M such that for every r ∈ Pα0 , r ≥Pα0
q0 ↾ α0 there is r

′ ≥Pα0
r such that r′⌢q0 \α0 ∈ D0.

So, for every such r′ there is c(r′) < κ such that

r′⌢q0 \ α0 ⊩ c(r′) = min(C∼ \ δ0).

Note that Pα0 ⊆ M . Hence all c(r′)’s are in M . Also |Pα0 | < κ. Hence their sup is below κ,

and then, by elementarity, in M . Denote it by c∗0. So,

q0 ⊩ min(C∼ \ δ0) < c∗0.

Define, for every τ < κ,

Dτ = {r ∈ P | r ≥∗ p and ∃ξ ∈ κ \ τ r ↾ ξ ⊩Pξ
(r \ ξ)||P>ξ

A∼ ∩ ξ)}.

Claim 3 Dτ is ≤∗ −dense open above p.

Proof. Set τ0 = τ + 1. Consider

D(τ0) = {r ∈ Pκ | r ⊥ p or (r ≥ p and r ∥ A∼ ∩ τ0)}.

By Lemma 2.3, there are α0 and q ≥∗ p such that

q ↾ α0 ⊩ ∃b ∈ G∼α0 b⌢q \ α0 ∥ A∼ ∩ τ0.

If α0 ≤ τ0 then we are done. Suppose that α0 > τ0. Consider D(α0) and again, using Lemma

2.3, pick α1 and q1 ≥∗ q such that

q1 ↾ α1 ⊩ ∃b ∈ G∼α1 b⌢q1 \ α1 ∥ A∼ ∩ α0.

If α1 ≤ α0, then q1 ∈ D(α0) and we are done. If α1 > α0, then continue and define in the

same fashion α2, q2 etc.

Suppose that the process continues infinitely many steps. Then we will have

α0 < α1 < ... < αi < ... and q0 ≤∗ q1 ≤∗ ... ≤∗ qi ≤∗ ..., i < ω.

Let α∗ =
⋃

i<ω αi and q∗ ≥∗ qi, for every i < ω. Let G ⊆ Pκ be a generic with q∗ ∈ G. For

every i < ω, let Gαi
= G ↾ Pαi

and Gα∗ = G ↾ Pα∗ .

Now, for every i < ω, there are ri+1 ∈ Gαi+1
and ai ∈ V such that

ri+1
⌢qi+1 \ αi+1 ⊩ A∼ ∩ αi = ai.
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Therefore,

ri+1
⌢q∗ \ αi+1 ⊩ A∼ ∩ αi = ai.

Set a =
⋃

i<ω ai. Then, in V [Gα∗ ], q∗ \ α∗ ⊩ A∼ ∩ α∗ = a, since each condition of the form

ri+1
⌢q ↾ [αi+1, α

∗) belongs to Gα∗ . So, there is r ∈ Gα∗ such that

r⌢q∗ \ α∗ ⊩ A∼ ∩ α∗ = a.

Hence,

r ⊩Pα∗ (q∗ \ α∗||A∼ ∩ α∗).

The only requirement on Gα∗ was that q∗ ↾ α∗ ∈ Gα∗ . Hence,

q∗ ↾ α∗ ⊩ q∗ \ α∗||A∼ ∩ α∗

and so q∗ ∈ Dτ .

□ of the claim.

Consider Dc∗0
. It is in M , as well. So, inside M , we can pick ξ0 ≥ c∗0, ξ0 ∈ I and t1 ≥∗ q0

such that t0 ↾ cf(δ) + 1 = p ↾ cf(δ) + 1, and–

t0 ↾ ξ0 ⊩Pξ0
t0 \ ξ0||Pκ\ξ0A∼ ∩ ξ0

and–

t0 ⊩ min(C \ δ0) < ξ0.

We continue the same process and construct a ≤∗ increasing sequence ⟨ti : i ≤ cof(δ)⟩ and

⟨ξi : i ≤ cof(δ)⟩ such that each strict initial segments of the sequences is in M , and–

� ti ↾ cof(δ) + 1 = p ↾ cof(δ) + 1.

� ti ↾ ξi ⊩Pξi
ti \ ξi||Pκ\ξiA∼ ∩ ξi.

� ti ⊩ min(C \ δi) ≤ ξi (furthermore, for each successor i, ti ⊩ min(C \ δi) < ξi).

The successor stages in the construction are as above: first, qi+1 ≥∗ ti and c∗i+1 > ξi are

constructed in M , such that qi+1 ↾ cof(δ)+1 = p ↾ cof(δ)+1 and qi+1 ⊩ min(C∼\δi+1) < c∗i+1.

Then, ti+1 ≥∗ qi+1 is constructed inside M , such that ti+1 ↾ cof(δ) + 1 = p ↾ cof(δ) + 1, and,

for some ξi+1 ∈ I \ c∗i+1,

ti+1 ↾ ξi+1 ⊩Pξi+1
ti+1 \ ξi+1||Pκ\ξi+1

A∼ ∩ ξi+1.
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At limit stages of the construction and at the stage cof(δ) itself we would like to take

an upper bound of the sequences constructed so far. So, assuming that i∗ ≤ cof(δ) is limit

and ⟨ti : i < i∗⟩, ⟨ξi : i < i∗⟩ were constructed, let ti∗ be a ≤∗-upper bound of ⟨ti : i < i∗⟩
and ξi∗ = sup{ξi : i < i∗}. Taking an upper bound of the sequence of conditions is possible

since for each i < cf(δ), pi ↾ cf(δ) + 1 = p ↾ cf(δ) + 1, and ⟨Pκ \ cof(δ) + 1,≤∗ ⟩ is more

than cof(δ)-closed. The fact that <cof(δ)M ⊆ M implies that each strict initial segment of

⟨ti | i < cof(δ)⟩, ⟨ξi : i < cof(δ)⟩ belongs to M (but the entire sequences, and the limit

t∗ = tcof(δ), are external to M).

Finally, letting t∗ = tcof(δ), we have t∗ ⊩ δ ∈ C∼, since C is forced to be closed by p.

Let G ⊆ Pκ be a generic with t∗ ∈ G. Set Gδ = G ↾ Pδ. Then for every i < cof(δ),

ti ↾ δ ∈ Gδ. Hence, there are ri ∈ Gξi , ri ≥ ti ↾ ξi and ai ∈ V such that

ri
⌢ti \ ξi ⊩ A∼ ∩ ξi = ai.

Set a =
⋃

i<cof(δ) ai. Then, in V[G], A ∩ δ = a, since each ri
⌢ti \ ξi is in G.

Remember that the only requirement on a generic set G was that t∗ belongs to it. Hence,

back in V ,

t∗ ↾ δ ⊩Pδ
t∗ \ δ||P>δ

A∼ ∩ δ.

So, t∗ forces δ ∈ S∼, and, as was shown above, δ ∈ C∼ as well. Contradiction.

□

5 No fresh subsets of κ in the full support

Our aim will be to prove the following :

Theorem 5.1 Let κ be an inaccessible cardinal and ⟨Pα, Q∼β | α ≤ κ, β < κ⟩ be the full

support iteration of Prikry-type forcing notions. Suppose that for every β < κ, for every

x, y, z ∈ Q
∼β, if z ≤∗

Q∼β
x, y and x, y are compatible according to ≤Q∼β

, then they are compatible

according to ≤∗
Q∼β

, i.e. there is e ∈ Q
∼β, e ≥∗

Q∼β
x, y.11

Let Gκ ⊆ Pκ be a generic. Then, in V [Gκ], there is no fresh subsets of κ.

Remark 5.2 More restrictive results were proved in [4] for cardinals above κ. The present

proof can be easily modified for higher cardinals.

11Note that if ≤=≤∗, then this holds trivially. Prikry, Magidor, Radin forcings, their supercompact
versions, etc., have this property. Actually, any reasonable forcing of this type has this property.

29



Proof. Let Gκ be a generic subset of Pκ.

We would like to show that there is no fresh subset of κ in V [Gκ].

Suppose otherwise. Work in V . Let A∼ be a name of such subset and let f
∼

be a name of

the characteristic function of A. Fix some p ∈ Gκ which forces this.

Let ζ < κ be an ordinal for which a new subset is added in the extension from V to V [G].

Such ζ exists, since the forcings Qα (for α < κ) have cardinality below κ, and at least one of

them is non-trivial. By increasing if necessary, we can assume that ζ is a singular cardinal.

Then ⟨Pκ \ ζ,≤∗ ⟩ is more than ζ-closed. Thus, there exists a condition q ∈ Gκ ↾ Pζ which

forces that a new subset is added to ζ. For simplicity, assume that p ↾ ζ forces this.

Let I be a subset of κ which consists of singular cardinals τ such that for every ρ <

τ, |Pρ| < τ .

As before, we divide into two cases:

Case 1. There exists µ ∈ (ζ, κ) ∩ I and a condition p∗ ∈ Pµ, p
∗ ≥ p ↾ µ which forces the

following property:

There are p′ ∈ G∼µ and s ∈ Pκ \ µ such that s ≥ p \ µ, and, for every r ≥∗ s, if

r(µ) = s(µ), r(µ+) = s(µ+), then the following holds: there are ξ < κ and r0, r1 ≥∗ r

such that r0(µ) = r1(µ) = r(µ), r0(µ
+) = r1(µ

+) = r(µ+), and, additionaly,

V ⊨ (p′
⌢
r0 ∥ f

∼
↾ ξ, p′

⌢
r1 ∥ f

∼
↾ ξ) , and the decisions are different.

Above, G∼µ denotes the canonical name for the generic set for Pµ.

By extending p∗, if necessary, we can decide the value of p′ in the statement above, and thus

assume that p∗ ≥ p′. Let s∼ be a Pµ-name for s from the above property, and assume that

this is forced by p∗.

Note that here we do not assume µ++−completence of the direct order. Additional

requirements are included in order to compensate this. Still, the treatment of this case

repeats completely Case 1 of 3.1.

Case 2. For every µ ∈ (ζ, κ) ∩ I, every condition in Pµ stronger than p ↾ µ forces (and

so, p ↾ µ forces) that–

For every p′ ∈ G∼µ and s ∈ Pκ \ µ such that s ≥ p \ µ, there exists r ≥∗ s with

r(µ) = s(µ), r(µ+) = s(µ+), such that for every ξ < κ and r0, r1 ≥∗ r,

if r0(µ) = r1(µ) = r(µ), r0(µ
+) = r1(µ

+) = r(µ+), then

V ⊨ If p′
⌢
r0 ∥ A∼ ∩ ξ and p′

⌢
r1 ∥ A∼ ∩ ξ then the decisions are the same.
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For every µ ∈ (ζ, κ) ∩ I, define (in V [Gµ])

e′ (µ) = {r ∈ Pκ \ µ : for every p′ ∈ G∼µ, ξ < κ and r0, r1 ≥∗ r,

if r0(µ) = r1(µ) = r(µ), r0(µ
+) = r1(µ

+) = r(µ+), then

V ⊨ If p′
⌢
r0 ∥ f

∼
↾ ξ and p′

⌢
r1 ∥ f

∼
↾ ξ then the decisions are the same.}

Claim 4 For every µ ∈ (ζ, κ) ∩ I,

e′(µ) is ≤∗-dense in P \ µ (above p \ µ).12

Proof. Note that |Gµ| ≤ µ+, the forcing ⟨Pκ \ µ++⟩ is µ++−closed and the coordinates

µ, µ+ do not change. Hence, for every given r′ ∈ Pκ \ µ, we can construct a ≤∗ −increasing

sequence of a length |Gµ| of conditions stronger than r′, which takes care of each p′ ∈ Gµ.

Then its upper bound will be in e(µ).

□ of the claim.

Given a generic Gκ ⊆ Pκ, p ∈ Gκ, define in V [Gκ],

S = {ξ < κ | ξ is a limit ordinal and ∃t ≥∗ p, t ∈ Gκ such that t ↾ ξ ⊩Pξ
t \ ξ||Pκ\ξA∼ ∩ ξ)}.

For every ξ ∈ S, fix some tξ ∈ Gκ such that tξ ≥∗ p and tξ ↾ ξ ⊩Pξ
tξ \ ξ||Pκ\ξA∼ ∩ ξ. So,

there is pξ ∈ G ↾ Pξ, p
ξ ≥ tξ ↾ ξ, (pξ)⌢tξ \ ξ ⊩ A∼ ∩ ξ = aξ, for some aξ ∈ V . Then there is a

finite bξ ⊆ ξ such that pξ \ bξ ≥∗ p ↾ (ξ \ bξ).
The argument of Lemma 4.7 applies without changes in the present situation, and shows

that S is stationary (in V [Gκ]).

Then we can find a stationary subset S ′ of S and a finite b such that for every ξ ∈ S ′,

bξ = b. Let µ ∈ I be any cardinal above max(b). By shrinking S ′, we can freeze pξ ↾ µ.

So there exists a condition q ∈ Gκ ∩ Pµ extending p ↾ µ, and, for every ξ ∈ S ′, q forces

that there exists a direct extension rξ ≥∗ p \ µ such that q⌢rξ decides A∼ ∩ ξ (actually, we

can take rξ = pξ \ µ⌢
tξ \ ξ and also get that q⌢rξ ∈ Gκ).

If the following holds,

(ℵ): For every β < κ, for every s, t, r ∈ Q
∼β, if s ≤∗

Q∼β
t, r, then there is e ∈ Q

∼β, e ≥∗
Q∼β

t, r.13

then we are done: indeed, q⌢p \ µ forces that–

A∼ =
⋃
ξ<κ

{X ⊆ ξ : X ∈ V, ∃ r∼, q ⊩ r∼ ≥∗ p \ µ, q⌢ r∼ ⊩ X = A∼ ∩ ξ},

12It need not be open.
13For example if Pκ is the Magidor iteration of Prikry forcings. Also note that we do not need to split

into Cases 1,2 in this type of situation.
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which is a contradiction since the set to the right belongs to V .

Let us deal with the general case. We assumed the following,

(ℶ): For every β < κ, for every x, y, z ∈ Q
∼β, if z ≤∗

Q∼β
x, y and x, y are compatible

according to ≤Q∼β
, then they are compatible according to ≤Q∼∗

β
, i.e. there is e ∈ Q

∼β, e ≥∗
Q∼β

x, y.

Now, Pκ is a full support iteration. So, (ℶ) implies -

:(ג) For every u, v, w ∈ Pκ, if w ≤∗
Pκ

u, v and u, v are compatible according to ≤Pκ, then

they are compatible according to ≤∗
Pκ
.14

By shrinking S ′, we can assume that for every ξ, ξ′ ∈ S ′, rξ ↾ µ++ = rξ
′
↾ µ++. Denote

by w the stabilized value. Assume that s ≥ w⌢p \ (µ+ + 1) is a condition forcing the above

picture. In other words, s forces that for some stationary S∼ ⊆ κ, and for every ξ ∈ S∼, there

exists a condition tξ ∈ G∼, tξ ≥∗ p, and a condition pξ ≥ tξ ↾ ξ such that pξ
⌢
tξ \ ξ||A∼∩ ξ, and

pξ
⌢
tξ \ ξ ↾ µ+ + 1 = w.

Let r ∈ P \ µ, r ≥∗ s \ µ be a condition such that s ↾ µ ⊩ r ∈ e′(µ). We argue that

s∗ = s ↾ µ⌢r forces that f
∼

∈ V . Let–

g =
⋃
ξ<κ

{g ∈ 2ξ : X ∈ V, ∃u ≥∗ s∗ \ µ+ + 1, (s∗ ↾ µ+ + 1)⌢u ⊩ g = f
∼

↾ ξ}.

Note that since s∗ \ µ ∈ e′(µ), g is a function. Furthermore,

s∗ ⊩ f
∼

= g.

Indeed, assume that G′ ⊆ Pκ is a generic containing s∗. Let ξ ∈ S ′. Then there

exists some u ≥∗ p \ (µ+ + 1) in G′ ∩ Pκ \ µ+ + 1 such that (s ↾ µ+ + 1)⌢u ∥ f
∼

↾ ξ and

(s ↾ µ+ + 1)⌢u ∈ G′ (since this was forced by s). By ,(ג) u, r \ (µ+ + 1) are ≤∗-compatible.

Let u∗ ≥∗ u, r \ (µ++1). Then (s∗ ↾ µ+ + 1)⌢u∗ witnesses the fact that f
∼

↾ ξ = g ↾ ξ. Since

this is true for every ξ ∈ S ′, we get f
∼

= g ∈ V . □

Lemma 5.3 Under the assumptions of the previous Theorem, P = Pκ does not add fresh

unbounded subsets to any λ with cof(λ) > κ.

Proof. Let A ∈ V [Gκ] be a fresh unbounded subset of λ with a characteristic function f .

Proceed as in the proof of Theorem 5.1. Case 1 is now formulated as follows15:

14It need not be the case for Easton or non-stationary support, since then the support of w may be strictly
smaller than those of u, v, and u, v may disagree on a common coordinate outside the support of w.

15The only difference is that ”∃ξ < κ” is replaced with ”∃ξ < λ”.
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Case 1. There exists µ ∈ (ζ, κ) ∩ I and a condition p∗ ∈ Pµ, p
∗ ≥ p ↾ µ which forces the

following property:

There are p′ ∈ G∼µ and s ∈ Pκ \ µ such that s ≥ p \ µ, and, for every r ≥∗ s, if

r(µ) = s(µ), r(µ+) = s(µ+), then the following holds: there are ξ < λ and r0, r1 ≥∗ r

such that r0(µ) = r1(µ) = r(µ), r0(µ
+) = r1(µ

+) = r(µ+), and, additionaly,

V ⊨ (p′
⌢
r0 ∥ f

∼
↾ ξ, p′

⌢
r1 ∥ f

∼
↾ ξ) , and the decisions are different.

The treatment of case 1 remain the same. Let us concentrate on Case 2, which is the

following:

Case 2. For every µ ∈ (ζ, κ) ∩ I, every condition in Pµ stronger than p ↾ µ forces (and so,

p ↾ µ forces) that–

For every p′ ∈ G∼µ and s ∈ Pκ \ µ such that s ≥ p \ µ, there exists r ≥∗ s with

r(µ) = s(µ), r(µ+) = s(µ+), such that for every ξ < λ and r0, r1 ≥∗ r,

if r0(µ) = r1(µ) = r(µ), r0(µ
+) = r1(µ

+) = r(µ+), then

V ⊨ If p′
⌢
r0 ∥ A∼ ∩ ξ and p′

⌢
r1 ∥ A∼ ∩ ξ then the decisions are the same.

As before, for every µ ∈ (ζ, κ) ∩ I, p ↾ µ forces that the following set is ≤∗-dense in Pκ \ µ:

e′ (µ) = {r ∈ Pκ \ µ : for every p′ ∈ G∼µ, ξ < λ and r0, r1 ≥∗ r,

if r0(µ) = r1(µ) = r(µ), r0(µ
+) = r1(µ

+) = r(µ+), then

V ⊨ If p′
⌢
r0 ∥ f

∼
↾ ξ and p′

⌢
r1 ∥ f

∼
↾ ξ then the decisions are the same.}

Now proceed in the following way. For every ξ < λ, let pξ ∈ Gκ be an extension of p which

decides A∼∩ ξ. Let bξ ⊆ κ be a finite set such that for every α /∈ bξ, pξ ↾ α ⊩ pξ(α) ≥∗
Q∼α

p(α).

Since cof(λ) > κ, we may find an unbounded S ′ ⊆ κ+ and a finite b ⊆ κ, such that for every

ξ ∈ S ′, bξ = b. Let µ ∈ (ζ, κ) ∩ I be a cardinal above max(b).

Thus, there is S ′ ⊆ λ stationary, such that for every ξ ∈ S ′, a condition of the form

pξ ↾ µ
⌢
pξ \ µ ∈ Gκ decides f

∼
↾ ξ and has the property that pξ \ µ ≥∗ p \ µ. The stationary

set S ′ replaces the set S ′ from the second case of Theorem 5.1, and, from here, the proof is

completed exactly as there. □

6 The Approximation and cover Properties

Definition 6.1 (Hamkins [8]) Let δ be a regular uncountable cardinal, and let N ⊆ V be a

transitive inner model containing the ordinals.
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1. N has the δ-cover property if for every A ∈ V , A ⊆ N such that |A| < δ, there exists

B ∈ N with |B|N < δ such that A ⊆ B.

2. N has the δ-approximation property if for every A ∈ V , A ⊆ N , the following are

equivalent:

(a) A ∈ N .

(b) A is δ-approximated in N : that is, for every X ∈ N with |X|N < δ, A ∩X ∈ N .

The properties were introduced by Hamkins. One of the central application of the prop-

erties is the absorption of large cardinals of V above κ into N , whenever N ⊆ V is an inner

model of V with the κ-cover and approximation properties (see [8] for a detailed discussion

about that). One example of this phenomenon is the following Lemma.

Lemma 6.2 Let κ be a regular uncountable cardinal. Assume that N ⊆ V as above has the

κ approximation property. Then every κ-complete ultrafilter W ∈ V whose underlying set

is some X ∈ N , extends a κ-complete ultrafilter of N . In other words, for every such W ,

W ∩N ∈ N .

Proof. In N , fix an enumeration ⟨Xα : α < (2|X|)N⟩ of the powerset of X. Let A = {α <

(2|X|)N : Xα ∈ W}. It suffices to prove that A ∈ N , and, by the κ-approximation property,

it suffices to prove that A is κ-approximated over N . Indeed, assume that B ⊆
(
2|X|)N has

size less than κ, and let us argue that A ∩B ∈ N . Since W ∈ V is κ-complete, the set–( ⋂
α∈B,Xα∈W

Xα

)
∩

 ⋂
α∈B,Xα /∈W

X \Xα


belongs to W , and in particular non-empty. Pick x in this set. Then A ∩ B = {α ∈ B : x ∈
Xα}, and this definition is carried out in N . □

Lemma 6.2 is often referred to as ”weak universality”. We remark that the κ-cover and

approximation properties imply a stronger form of universality that involves extenders, which

is referred to as ”Woodin’s Universality Theorem”:

Theorem 6.3 (Woodin) Let κ be a regular uncountable cardinal. Assume that the extension

N ⊆ V as above satisfies the κ-cover and approximation properties and E ∈ V is a (κ, λ)-

extender. Then E ∩N ∈ N ,16 provided that, for every A ∈ P(λ) ∩N , jE(A) ∩ λ ∈ N .

16We view E as the sequence ⟨(a,A) : a ∈ [λ]<ω and a ∈ jE(A)⟩, so E∩N is the N -extender whose derived
measures are the restrictions of the derived measures of E.
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Goldberg asked whether V has the κ-cover and approximation properties inside V [G],

where G ⊆ Pκ is generic over V (this is Question 1.7; Pκ is as in Subsection 1.2). Our goal

in this section will be to provide an affirmative answer, see Theorem 6.6.

Lemma 6.4 (Goldberg) Let κ be regular. Assume that V ⊆ V ′ is a cardinal preserving

extension which has the κ+-cover property, and does not add fresh subsets to κ. Then it does

not add fresh subsets to any ordinal of cofinality (in V ) κ.

Proof. Assume that cf(α) = κ and A ⊆ α is fresh over V . Fix in V an increasing continuous

cofinal sequence ⟨αξ : ξ < κ⟩ in α. The set Y = {A ∩ αξ : ξ < κ} ∈ V ′ has size κ. By

freshness of A, Y ⊆ V . By the κ+-approximation property, there exists a set X ∈ V of size

κ that covers Y . In other words, for every ξ < κ, A∩ αξ ∈ X. By shrinking X, if necessary,

we can assume that every element of X is a bounded subset of α.

Enumerate X = ⟨xν : ν < κ⟩ ∈ V . Then the set B = {ν < κ : ∃ξ < κ, A ∩ αξ = xν}
is a fresh subset of κ. Indeed, for every ν∗ < κ, let ξ∗ < κ be a limit ordinal, such that

sup{sup(xν) : ν < ν∗} < αξ∗ . Since A ∩ αξ∗ ∈ V , it can be used to define in V the set

B ∩ ν∗ = {ν < ν∗ : ∃ξ < ξ∗, xν = (A∩αξ∗)∩αξ}. So each strict initial segment of B belongs

to V . However, B /∈ V since A =
⋃

ν∈B xν would belong to V if B belonged to V . So B is a

fresh subset of κ over V , which is a contradiction. □

We proceed and prove the κ-cover property. We will actually prove a bit more - the

κ+-cover property.

Theorem 6.5 Let P = Pκ be as in subsection 1.2. Let G ⊆ P be generic over V . Then:

1. V satisfies the κ-cover property in V [G].

2. If the Easton or nonstationary support are taken, V satisfies the κ+-cover property in

V [G].

3. If the Full support is taken, V satisfies the κ+-cover property in V [G], provided that for

every α < κ, ⟨Q
∼α,≤Q∼α ,≤∗

Q∼α
⟩ satisfies the following property: for every x, y, z ∈ Q

∼α,

if z ≤∗
Q∼α

x, y then x, y are ≤∗-compatible.

Proof.

1. We prove that V has the κ-cover property. Let A ∈ V [G] be a set of ordinals of size

< κ. Assume that ζ
∼

< κ and ⟨a∼ξ : ξ < ζ
∼
⟩ is a sequence of P -names for an enumeration
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of A∼ whose order type ζ
∼

is forced, by the weakest condition, to be below κ. By Lemma

2.5, there exists p ∈ G and ζ∗ < κ such that p ⊩ ζ
∼

< ζ∗. Assume for simplicity that p

is the weakest condition (else, work above it). Work in V [G ∩ Pζ∗+1] and construct a

≤∗-increasing sequence ⟨qξ : ξ < ζ∗⟩ of conditions in P \ ζ∗ + 1, and a sequence of sets

of ordinals of size < κ, ⟨Aξ : ξ < ζ∗⟩ such that for each ξ < ζ∗, qξ ⊩ a∼ξ ∈ Aξ (where

a∼ξ is defined to be 0 in the case where ξ > ζ
∼
). Note that the construction is done by

a successive use of Lemma 2.5, and we have enough closure at limit steps. Finally, let

q∗ be the coordinatewise supremum of ⟨qξ : ξ < ζ∗⟩, and A∗ =
⋃
{Aξ : ξ < ζ∗}. Then

A∗ has size < κ. So q∗ ∈ P \ ζ∗ + 1 and q∗ ⊩ A∼ ⊆ A∗, but q∗, A∗ were constructed

in V [G ∩ Pζ∗+1]; since Pζ∗+1 has size < κ, we can find p ∈ Pκ and A∗∗ in V such that

|A∗∗| < κ and p ⊩ A∼ ⊆ A∗∗.

2. If the Easton support is taken, then |P | = κ and generic extensions with P have the

κ+-cover property (as any other extension with a κ+-c.c. forcing). Thus, let us take

care of the nonstationary support case. Let A∼ be a P -name for a set of size κ, and

pick P -names ⟨a∼ξ : ξ < κ⟩ for an enumeration of A∼. Following the standard fusion

argument, we construct sequences:

� ⟨pξ : ξ < κ⟩ an ≤∗-increasing sequence of conditions.

� ⟨νξ : ξ < κ⟩ a continuous increasing sequence of ordinals in κ.

� ⟨Cξ : ξ < κ⟩ a decreasing sequence of clubs in κ, each Cξ disjoint from the support

of pξ.

� ⟨Aξ : ξ < κ⟩ a sequence of sets of size < κ in V , such that, for each ξ < κ,

pξ ⊩ a∼ξ ∈ Aξ.

We make sure during the construction that for every ξ′ < ξ, pξ ↾ νξ′ +1 = pξ′ ↾ νξ′ +1,

and νξ ∈ Cξ′ .

The construction is a standard fusion construction. Assuming pξ, νξ, Cξ, Aξ were cho-

sen, let νξ+1 be the least point of Cξ above νξ. Let pξ+1 be a condition such that

pξ+1 ↾ νξ+1 +1 = pξ ↾ νξ+1 +1, νξ+1 /∈ supp(pξ+1), and pξ+1 \ νξ+1 +1 decides the value

of a∼ξ up to < κ possibilities (using Lemma 2.5), where the set of those possibilities

belongs to V [G∼ ∩ Pξ+1]; as usual, we can assume that for some Aξ ∈ V of size < κ,

pξ+1 ⊩ a∼ξ ∈ Aξ, since Pξ+1 has size below κ. Finally, let Cξ+1 be a sub-club of Cξ

disjoint from the support of pξ+1.

In limit steps, take νξ =
⋃

ξ′<ξ νξ′ and pξ that satisfies pξ ↾ νξ =
⋃

ξ′<ξ pξ′ ↾ νξ′ + 1,
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νξ /∈ supp(pξ), pξ \ νξ + 1 is ≤∗ above the pointwise supremum of ⟨pξ′ \ νξ + 1: ξ′ < ξ⟩
and pξ ⊩ a∼ξ ∈ Aξ for some Aξ in V of size < κ.

This concludes the construction. Finally, let p∗ =
⋃

ξ<κ pξ ↾ νξ + 1 and A∗ =
⋃

ξ<κAξ.

Then p∗ ⊩ A∼ ⊆ A∗ and |A∗| ≤ κ.

3. It suffices to prove that the additional assumption imposed on P ensures that P has the

κ+-c.c.. Assume that ⟨pi : i < κ+⟩ is a sequence of conditions. Pick S ⊆ κ+ unbounded

and a finite b∗ ⊆ κ such that for every i ∈ S, pi \max b∗ + 1 ≥∗ 0∼P\max b∗+1. Denote

β = max b∗ + 1, and, by shrinking S ⊆ κ+, we can assume that for every i ̸= i′ in S,

pi ↾ β = pi′ ↾ β. It follows that for such i ̸= i′ in S, pi, pi′ are compatible.

□

We are now ready for the proof that Pκ additionally satisfies the κ-approximation prop-

erty.

Theorem 6.6 Let P = Pκ be as in subsection 1.2.

Assume that P does not add fresh subsets to ordinals of cofinality ≥ κ. By the results of the

current paper, this holds, for instance, if one assumes:

1. There exists a stationary set I ⊆ κ consisting of singulars, such that for every µ ∈ I,

� If γ < µ then |Pγ| < µ.

� ⊩Pµ ⟨Pκ \ µ⟩ is µ++-closed.

2. In the case where the full-support iteration is taken, assume also that for every α < κ,

⟨Q
∼α,≤Q∼α ,≤∗

Q∼α
⟩ satisfies the following property: for every x, y, z ∈ Q

∼α, if z ≤∗
Q∼α

x, y

then x, y are ≤∗-compatible.

Let G ⊆ P be generic over V . Then V has the κ- cover and approximation properties in

V [G].

Proof. The κ-cover property was proved in the previous theorem. Thus, we concentrate on

the approximation property.

First, let us justify that the above assumptions suffice to prove that, for every λ with cof(λ) ≥
κ, P = Pκ does not add fresh unbounded subsets of λ. Indeed:

� For cof(λ) = κ, it suffices to prove that no fresh subsets are added to κ, by lemma 6.4

and the fact that P has the κ+-cover property (proved in Theorem 6.5). The fact that

no fresh subsets are added to κ follows from Theorems 3.1, 4.5, 5.1.
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� For cof(λ) > κ: if the nonstationary support is taken, this follows from Lemma 3.4.

For the Easton support, this follows from Lemma 6.4 and the fact that for a regular µ,

fresh subsets of µ are not added by a forcing of size < µ (this is proved, for example,

in Corollary 4.8 in [4]). For the full support iteration, this follows from Lemma 5.3.

We proceed and prove the κ-approximation property. We may consider only sets of

ordinals. Assume that α∗ is an ordinal, and f : α∗ → 2 is the characteristic function of a

κ-approximated subset of α∗. Our goal is to prove that f ∈ V .

Assume by induction that for every α < α∗, f ↾ α ∈ V . If cf(α∗) ≥ κ, then the fact that

P does not add fresh subsets to ordinals of cofinality ≥ κ shows that f ∈ V . Thus assume

that cf(α∗) < κ. Denote ξ∗ = cf(α∗) and fix an increasing, cofinal sequence ⟨αξ : ξ < ξ∗⟩ in
α∗.

Work in V [G ↾ ξ∗ +1]. We construct a ≤∗-increasing sequence ⟨pξ : ξ < ξ∗⟩ in P \ ξ∗ +1,

and an increasing, continuous sequence of ordinals ⟨βξ : ξ < ξ∗⟩ below κ. In limit steps, we

have enough closure to take upper bounds. So we concentrate on successor steps. Assume

that pξ has been constructed. We construct pξ+1. Let D be the dense open set of conditions

in the forcing P \ ξ∗ + 1, which decide f
∼

↾ αξ. Then, by applying lemma 2.3, there exists

βξ+1 > βξ and pξ+1 ≥∗ pξ, such that for every r ≥ pξ+1 ↾ βξ+1, there exists r′ ≥ r such that

r′⌢pξ+1 \ βξ+1 ∈ D. This concludes the successor step.

Let p∗ be an upper bound of the sequence ⟨pξ : ξ < ξ∗⟩. Let β∗ = sup{βξ : ξ < ξ∗}. Then,
over V [Gξ∗+1], the following property holds: for every ξ < ξ∗, and r ≥ p∗ ↾ β∗ there exists

r′ ≥ r such that r′⌢p∗ \ β∗ decides f
∼

↾ αξ.

Clearly, we can assume that the same property holds over V rather than V [Gξ∗+1]. So

we can assume that p∗ ∈ Pκ.

Now, we finish the proof by integrating an argument of Hamkins from [8]. Let T ⊆ 2<α∗

be a sub-tree of the full binary tree, consisting of all the sequences σ ∈ 2<α∗
for which there

exists an extension of p∗ which forces that f
∼

↾ lh(σ) = σ.

For every σ ∈ T , let pσ be an arbitrary condition which extends p∗ and forces f
∼

↾ lh(σ) =

σ. Note that we do not require that the pσ-s extend each other; the only requirement is

pσ ≥ p∗.

Fix σ ∈ T . Note that pσ extends the condition r⌢p∗ \ β∗ for r = pσ ↾ β∗. Let r′ ≥ r be

a condition such that r′⌢p∗ \ β∗ decides f
∼

↾ lh(σ). Denote p∗σ = r′⌢p∗ \ β∗. Then p∗σ, pσ are

compatible, and both decide f
∼

↾ lh(σ). Thus, the decided value is the same.

So we have constructed a sub-tree T of the binary tree, and an associated tree of condi-

tions ⟨p∗σ : σ ∈ T ⟩, such that each condition p∗σ has the form r⌢p∗ (for some r ∈ Pβ∗), and
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p∗σ ⊩ f
∼

↾ lh(σ) = σ.

LetX ⊆ T be the set of splitting nodes, namely nodes σ ∈ T such that σ⌢⟨0⟩, σ⌢⟨1⟩ ∈ T .

Claim 5 |X| < κ.

Proof. For every σ ∈ X, p∗σ⌢⟨0⟩ and p∗σ⌢⟨1⟩ are defined, and have the form rσ⌢⟨0⟩
⌢p∗ \β∗ and

rσ⌢⟨1⟩
⌢p∗ \ β for some rσ⌢⟨0⟩, rσ⌢⟨1⟩ ∈ Pβ∗ . Note that rσ⌢⟨0⟩, rσ⌢⟨1⟩ are incompatible.

Now, in order to prove that |X| < κ, consider the map σ 7→ {rσ⌢⟨0⟩, rσ⌢⟨1⟩} from X to

[Pβ∗ ]2. Since | (Pβ∗)2 | < κ, it suffices to prove that this map is injective.

Indeed, assume that σ ̸= σ′ are distinct points of X, which are mapped to the pairs

{rσ⌢⟨0⟩, rσ⌢⟨1⟩} and {rσ′⌢⟨0⟩, rσ′⌢⟨1⟩}, respectively.
If σ, σ′ are incompatible, then {rσ⌢⟨0⟩, rσ⌢⟨1⟩} ≠ {rσ′⌢⟨0⟩, rσ′⌢⟨1⟩}, since the conditions in

the former pair, concatenated with p∗ \ β∗, force that f
∼

↾ (lh(σ)) = σ, while the conditions

in the latter pair, concatenated with p∗ \ β∗, force that f
∼

↾ (lh(σ′)) = σ′.

Thus, assume that σ, σ′ are compatible, and, without loss of generality, σ′ strictly ex-

tends σ, and σ′(lh(σ)) = 0. Then any condition in the pair {rσ′⌢⟨0⟩, rσ′⌢⟨1⟩} forces, when

concatenated with p∗ \ β∗, that f
∼

↾ (lh(σ) + 1) = σ⌢⟨0⟩. On the other hand, the condition

rσ⌢⟨1⟩, which belongs to the pair {rσ⌢⟨0⟩, rσ⌢⟨1⟩}, forces, when concatenated with p∗ \ β∗,

that f
∼

↾ (lh(σ)+1) ̸= σ⌢⟨0⟩. It follows that {rσ⌢⟨0⟩, rσ⌢⟨1⟩} ≠ {rσ′⌢⟨0⟩, rσ′⌢⟨1⟩}, as desired. □

Finally, since f is κ-approximated and |X| < κ, f ↾ X ∈ V . Take any extension p∗∗ of

p∗ which decides f
∼

↾ X. Denote by g : X → 2 the function in V for which p∗∗ ⊩ f
∼

↾ X = g.

Then p∗∗ ⊩ f
∼

=
⋃
{σ ∈ T : σ ↾ X ⊆ g}, namely p∗∗ forces that f

∼
∈ V . □

We conclude this paper with an affirmative answer to question 1.4.

Corollary 6.7 Assume that Pκ is an iteration of Prikry-type forcings as in the previous

theorem, and G ⊆ Pκ is generic over V . Let W ∈ V [G] be a κ-complete ultrafilter whose

underlying set belongs to X. Then W ∩ V ∈ V .

Proof. This is an immediate consequence of Theorem 6.6 and Lemma 6.2.
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