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Abstract

We examine the existence (and mostly non-existence) of fresh sets in commonly
used iterations of Prikry-type forcing notions. Results of [4] are generalized. As an
application, a question of a referee of [10] is answered, as well as a question of Gold-
berg regarding the Cover and Approximation properties. In addition, preservation of
stationary sets is addressed.

1 Introduction

Let P be a forcing notion and G C P its generic subset. Suppose that W is a k—complete
ultrafilter over k in V[G]. Let U = W N V. In general, U need not be in V. However, by J.
Hamkins [7], if P has a gap below &, i.e. for some § < K, P = R % @ such that |R| < § and
Q) is 0 + 1—strategically closed, then U € V. One of the main teclrrlvniques was the analysis
gf fresh sets in forcings extensions with P.

Following Hamkins, a subset Z of \ is called fresh (over V) if for every « < A, ZNa €V,
but Z ¢ V.

In [4] the following was shown:

Theorem 1.1 U € V', provided that—
1. all cardinals of V in the interval [k, (25)V] are preserved,

2. no fresh subsets are added to cardinals X\, k < X < (27)V.

*We are grateful to participants of TAU Set Theory seminar and in particular to Menachem Magidor
and to Omer Ben-Neria for their comments and remarks. We would like to thank the referee for reading the
paper and offering improvements and useful remarks. The work of the first author was partially supported
by ISF grant No. 882/22.



So, fresh sets are relevant for understanding whether U € V.

Structural properties of the forcing being considered may rule out the possibility that fresh
subset are added to certain cardinals. J. Hamkins [7] proved that if a forcing has a gap
below r, then no fresh subsets of a cardinal p whose cofinality is above the gap are added.

Another example in this spirit is the following Lemma from [4]:

Lemma 1.2 Let k be measurable. Let V' C V[G] be a forcing extension that preserves k.
Assume that some normal measure U € V' on k concentrates on the set {a < k: 2% = ot}
and extends to a normal measure W € V|G| on k.

Then no fresh subsets are added to k in the extension V C VI[G].

We aim to extend Hamkins’ approach to a broader class of forcing notions, focusing
primarily on iterations of Prikry-type forcings. Lemma 1.2 can be used, for example, to
prove that such iterations - of length which is a measurable cardinal x - do not introduce
any fresh subsets of x.! Additional results concerning nonexistence of fresh subsets of k™ were
provided in [4] as well?. These results suffice to analyze the structure of normal measures on
k after performing iterations of Prikry-type forcings. This analysis has been done in a series
of papers [4], [5],[9], [6].

Continuing the series of papers, the present work focuses mainly on fresh sets. We will
generalize the aforementioned results from [4], and connect them to new results regard-
ing preservation of stationarity. The motivating questions that this paper answers are the

following:

Question 1.3 Let s be an inaccessible cardinal. Which stationary subsets S C x remain

stationary after forcing with an iteration of Prikry-type forcings of length x?

Question 1.4 Assume that W is a k complete ultrafilter in the generic extension, after
forcing with an iteration of Prikry-type forcings of length k. Assume that W concentrates

on a ground model set. Is it true that W lifts a xk-complete ultrafilter of the ground model??

Question 1.5 Let x be an inaccessible. Can iterations of length x of Prikry-type forcings

add fresh subsets to x? (note that Lemma 1.2 doesn’t apply if £ is not measurable).

'Some relatively mild assumptions are needed to be imposed on the forcing in order to deduce that. We
will provide below a list of sufficient conditions (see subsection 1.2 below). See also [4, Corrolary 4.7] for a
detailed proof.

2See Corollary 4.9, Lemma 4.10 and Lemma 4.11 in [4].

3Note that Theorem 1.1 applies only to the case where W concentrates on x. A central example to be
considered here is whether k-complete ultrafilters on (P,Q()\))V[G] (for A > k) restrict to ultrafilters of V,

provided that they concentrate on (P(\))".



Question 1.6 Can the nonstationary support iteration of Prikry-type forcings (a definition

of the nonstationary support will be given below) add new measurable cardinals??

Question 1.7 (Goldberg) Let x be an inaccessible. Does iterations of length x of Prikry-

type forcings have Hamkins’ x-cover and approximation properties?®

1.1 Framework

Let us describe the framework of this paper. Throughout the entire paper,

<Pa,g5|0(§li,ﬁ</i>

is an iteration of length x of Prikry-type forcings, taken with either Magidor (full support),
nonstationary or Easton support. This means that, for every a < &,
lFp, 7 <Q°" <Qa ét@fl> is a Prikry-type forcing notion”

and conditions in P,, for a given a < &, are sequences p = (p(f): 8 < «) such that, for
every B <a,p| B € Psandp | Sl p(B) € Qp. Additional requirements might be imposed
on the set supp(p) = {8 < a:p [ BIF p(B) # 0¢g,} depending on the chosen support for
the iteration; this point will be further explained below.

Whenever p = (p(8): 8 < a),q=(q(8): B < a) € P,, we say that ¢ extends p, and denote

~J ~Y

q>p, p,ifforevery 8 <a,q [ B2p,pl B, qlBIF p(ﬂ)ggﬁq(ﬁ), and for all but finitely
many S € supp(p), q [ B Ik q(5) >0, p(B). The extension ¢ > p is called direct if for all

B € supp(p), ¢ | BIF q(5) >0, p(6), in which case we denote ¢ >* p.
We refer the reader to [3] for a discussion about the full and Easton support iterations, and

to [1] for a discussion about nonstationary support iterations.

We will also include the following assumptions:

1. GCH.
2. k 1s an inaccessible cardinal.

3. For every 8 < &, (Qg, <0, ) is forced to be |3|—closed.

Note that for a singular 8 this implies |5|"—closure.

4This question was raised by the referee of [10]. Regarding the Full and Easton support iterations, a
negative answer is already known, see [3].
SFor a definition of the properties, see section 6.



4. For every 8 < k, |Qg| < k.

5. If the Easton support is used, then for every p € P, and every inaccessible a < k,

a > [supp(p) N a|, provided that for every 5 < a, | P3| < a.

6. If the non-stationary support is used, then for every p € P, and every inaccessible

a < k, supp(p) N« is non-stationary in «, provided that for every 5 < a, |P3| < a.

1.2 Structure of the paper

We conclude the introduction by summarizing the structure and the main theorems of the

paper.

e In Section 2 we deal with preservation of stationarity. The main result is Theorem
2.2, in which we prove that, for S C k, its stationarity is preserved after forcing with
P, with an Easton or nonstationary support; we also provide a sufficient condition for

preservation of S when the full support is taken. This answers Question 1.3.

e In Sections 3-5 we address fresh subsets, providing a negative answer to Question 1.5
under relatively mild additional assumptions on the forcing P,. The proof methods
depend on the chosen support: in section 3 we deal with the nonstationary support
(Theorem 3.1); in section 4 we deal with the Easton support (Theorem 4.1 under the
additional assumption that x is Mahlo, and see Theorem 4.5 for a version without it);
in section 5 we deal with the full support (Theorem 5.1).

In addition, we provide in section 3 a negative answer to Question 1.6, see Theorem
3.5.

e In Section 6, we address Hamkins’ Cover and Approximation properties. We show in
Theorem 6.6 that P, satisfies the xk-Cover and k-Approximation properties (as long as
it satisfies the mild assumptions needed for the proofs that no fresh subsets are added,
given in Sections 3-5), answering question 1.7 above. As an application, an affirmative
answer to Question 1.4 is given in Corollary 6.7. This generalizes Theorem 1.1 in the

context of iterations of Prikry-type forcings.



2 On preservation of stationarity in Prikry-type exten-
sions

Let x be an inaccessible cardinal and let S be a stationary subset of k. Suppose that
(Pa,Qp | o < K,B < k) is an Easton or a full (Magidor) or a non-stationary support
iteration of Prikry-type forcing notions as in the introduction. Let G, be a generic subset of
P,.

We would like to address here a question whether S remains stationary in V[G,].

Remark 2.1 1. Note that we can assume that x is a regular cardinal in V', since otherwise

it is possible to replace it by cof(k).
2. Our main interest will be in situations where x is an inaccessible cardinal in V[G].

3. If k is a Mahlo cardinal, then Easton support iterations satisfy xk—c.c. and so preserves

stationary subsets of .

4. If a full support iteration of Prikry forcings is used, then the set of former measurables
which changed their cofinality will be non-stationary, as witnessed by the regressive

function which maps each one of them to the first element in its Prikry sequence.

Theorem 2.2 Assume GCH. Let k be an inaccessible cardinal. Let P = P, be as in the

introduction. Let G C Py be generic over V.. Then k is inaccessible in V [G], and-

1. If S C &k is stationary in V' and consists of singulars, then S remains stationary in

VIal.

2. If the Easton or nonstationary support is used, then P, preserves stationary subsets of

K.
3. If the full support is used, S C k 1is stationary in 'V, and—

(a) For every a € S, (Qq, <*) is |a|"-complete.

(b) For every a < k, Qo has the property that for every p,q,r € Q, if p,q >*r, then
there ist € QQ, such thatt >* p,q.

Then S remains stationary in V[G|.



The inaccessibility of x in V [G] is proved in 2.6. Point 1 of the Theorem is proved in
2.7. Point 2 of the Theorem is proved in Theorems 2.9 and 2.11. Point 3 of the Theorem is
proved in 2.10.

Let us start with the following lemma which is a weak form of a strong Prikry condition:

Lemma 2.3 Let D C P, be a dense open and let p € P,.. Then there are o < k and q >* p
such that for every r € P,,r >p, q | « there is v’ >p, 1 such that ' ~q\ a € D.

Proof. Let D and p = (p(7y) | 7 < k) be as in the statement of the lemma.

[

We prove the lemma for the full support iteration. The arguments for the Easton and for
the non-stationary support iterations are very similar, only coordinates in supports should
be considered.

Suppose that the conclusion of the lemma fails.

We define by recursion, for each # < k, a condition—
= Iy <B{(pM) B <y<r)
so that p® | B IF —0g, where
op =3 E€PN\Bt>"p\BIreGy rteD.
For the first stage, we have—
or=HePN\NLt>"p\13IreG rteD.

(o satisfies the Prikry condition, so there is pj >* py which decides o,. If pj IF o1, then
Pyt will be as desired. So, assume that p I =0y, and continue.
The successor step is similar to the first stage above.

For limit steps, suppose that 3 is a limit ordinal. Let us show that—

=<8 (pMIB<y<r)

is as desired, i.e. p? | B IF —0s. Suppose otherwise, then there is r = (r(v) [ v<B) € Ps
such that » > p® | B and r IF 0. Extend it, if necessary, so that for some {

ri-t >"p\Bandr~t € D.

By the definition of order on Pg, there is 8* < 8 such that for every v, 5* <~y < S,



Consider a Pg+«-name

Then
IR > "p\f andr [ 37t € D.

But r | 8* > p°" | B* IF =og-. Contradiction.
This completes the construction.
Consider p(a) = (p*(7) | 7 < k). Pick some r > p” in D. Now we obtain a contradiction as
in the limit stage gbove.
OJ
Assuming that x is measurable in the ground model, a stronger version of Lemma 2.3

can be proved:

Lemma 2.4 Assume that s is measurable in V and U is a normal measure on k. Let
D C P, be a dense open and let p € P,. Then there are a < k and q >* p, such that
ql a=p!la and for everyr € Py,r >p, p | a there is " >p, 1 such that "¢\ a € D.

Moreover, for every X € U, «a,q above can be chosen such that a € X.

Proof. Let 03 be as in lemma 2.3. If there exists § € X such that p [ 8 I 03, we are done.

Assume otherwise. For every 8 € X there exists r3 > p | 8 such that rg IF =o3. For
each such limit 3, there exists 5’ < 8 such that r5 [ ' IFrg\ ' >*p | [, 5). The function
B+ [ is regressive, and thus there exist a set A € U and * < x such that for every § € A,
rg | B IFrg\ B* >*p | [5* B). Since |Ps-
that there exists r* € Pg-, such that, for every 5 € A, rg [ f* =1r*.

Then r* has the following property: for every 5 € A there exists s(5) >* p | [5%, ) such
that 7* 7 s(f) IF mo3. Now apply ineffability: we can find A* C A, A* € U, and a Pg--name
for a condition s* = |8+ s(8)],, € P\ B*, such that r* IF s* >* p\ §*, and, for every 5 € A*,

< K, we can shrink A € U further, and assume

st A, B) = s(B) IF —op.
Finally, pick some ¢ > r*"s* g € D. Let 5 € A*\ * 4 1 be such that—

gl BIFg\B="s"\f



and in particular,
qlBIFg\B="p\B, andq [ B q\BED
and thus ¢ [ 8 IF 05; however, since 3 € A%,

qIBzr"s" 15" 0) Ik —os

which is a contradiction.
O

Lemma 2.5 Letp € P, be a condition, and assume that ( a P.-name for an ordinal. Then
there exists ¢ >* p and a set of ordinals A € V' with |A| < Kk such that qIF ¢ € A.

Proof. Apply lemma 2.3 on the dense open set D of conditions which decide the value of
(. Then there exists ¢ >* p and « < k such that, for every r > ¢ | « there exists ' > r
gilch that g\ a || (. Let A € V be the set of all possible values of ( as decided by some
extension of q. We arNgue that |A] < k. h

Assume that ¢ > ¢ decides the value of (. Denote r = ¢’ [ . Then there exists ' > r
such that " ¢\ a || ¢. So both conditionévq’, ""q \ a decide the value of (; but those
conditions are compatﬁ;le, since ' > p' | «, and ¢’ \ @ > ¢\ . This shows that e:;ery element
of A can be realized as the decided value of { by a condition of the form ¢ \ a for some
r € P,. But the cardinality of the set of SuC}erCOHditiODS is strictly below &, since |P,| < &,
by the assumption on the cardinality of the forcings Qﬂ for # < k.
O

Corollary 2.6 Let G, C P,. Then k remains inaccessible in V[G,].

Proof. We concentrate on the proof that x remains a regular cardinal after forcing with P,
since it’s routine to verify that it remains strong limit.
Assume that f is a P.-name for a function from some ordinal 7 < k to k. Let p € P, be

a condition which forces this. We argue that there exists p* > p and some p* < &, such that
p*IFrng(f) C p”.

Let G:rl C P-4 be an arbitrary generic extension containing p [ 7 + 1. We prove that,
in V' [G,41], there exist ¢ >* p\ 7+ 1 and p < k such that ¢ IF rng(f) C p. Once we prove
that, we are done: let ¢, u be P.,i;-names which are forced by p | 7r'v + 1 to have the above
properties. Let p* < KNbeNan upper bound on the set of possible values of u, as forced by
extensions of p [ 7+ 1. Since |P,11| < &, this set is bounded in «, and thus t}?ere exists such

an upper bound below k. Then p* =p [ 7+ 17 ¢ IF mg(f) C u*, as desired.

8



Work in V' [G,11]. Apply lemma 2.5 over and over to construct a <*-increasing sequence
of conditions (pe: & < 7) in P, \ 7 + 1, such that, for each { < 7 there exists some pe < K
such that pe IF f(§) < pe. Note that in limit steps (including the last step) we may take
upper bound, sirr\;ce the direct extension order of P, \ 7 4+ 1 is more than 7-closed. Finally,
q = p, forces that the image of i is bounded by p = U§<T e < K.
O

Theorem 2.7 Let S C k be a stationary set consisting of singulars. Let G,, C P,,. Then S

remains stationary in V[G,].

Proof. Let C' C k be a club in V' [G]. Let p € G be condition which forces this.
Work in V. Pick an elementary submodel M =< H, such that:

1. |[M]| =06 <r,

2. MNk =24,

3. § € S (in particular, ¢ is singular),
4. ©t®>Nr C M,

5. Kk, Py, S,C,pe M.

Pick a cofinal sequence in 6, (0; | i < cof(d)).

Apply lemma 2.5. Construct (in V') a <*-increasing sequence of conditions in the forcing
P, \ cof(6), (pe: € < cof(d)), such that each condition pe belongs to M.

We first construct pg >* p in M, such that po | cof(d) + 1 = p | cof(d) + 1, and, using

Lemma 2.5,

po [ cof(0) +11-3a <k, po\ cof 6 + 1 IF min (C\ ) < .

Let ag be the least upper bound of the set of all possible values for the Pof(s)1-name «.
Then po IF min (C'\ y) < ap. Note that by elementarity, ag < 6.

Assuming that i < cof(d) and p;, o; have been defined and both are in M, and let us
define p;yq, ;1. Let piyg >* p; in M be such that p;q | cof(d) +1 = p | cof(d) + 1, and
there exists a1 <k, piy1 IF min (C\ max{d;41, @;}) < ;1. Take a1 to be minimal with

this property. Then ;1 < 4.



For the limit step, assume that j < cof(¢) is limit and (p;: i < j), (a;: i < j) have been
constructed. Use the fact that M is closed under < cof d-sequences to find an upper bound
q € M of (p;:i < j), such that g | cof(0) + 1 = p [ cof(d) + 1. We used here the fact that
P\ cof(0)+1 is cof(§)-closed. Finally, let p; >* ¢ be chosen in M such that p; [ cof(d)+1 =
p [ cof(0) + 1 and, for some o < &, p; IF min (C'\ max{d;,sup{e;: i < j}}) < a;. We used
here again the fact that M is closed under < cof(d)-sequences and thus (a;: ¢ < j) € M.
Let «; be the minimal with the above property. Then o; € M.

This concludes the inductive construction. In the final limit step, take, in V', an upper
bound ¢* for all the conditions (p;: i < cof(d)). Then ¢* I =
forced by p to be closed. Thus 6 € C'N S, as desired.

0]

i<cot(s) X € C, since C' is

Remark 2.8 Basically the same argument works for x replaced by .

Now let us try to extend the theorem to S’s which consists of regular cardinals. We deal
with three supports separately.

First point out the following:

Theorem 2.9 Suppose that the Easton support is used in P.. Assume that S C k 1s sta-

tionary. Then S remains stationary in V' [G].

Proof. 1f k is a Mahlo cardinal, the Easton support iteration is x-c.c. and thus preserves
stationary subsets of k. Thus, we can assume that x is not Mahlo. In this case, there exists
a club C C k of singular cardinals. Thus, by shrinking S we can assume that it consists of
singulars. Then, Theorem 2.7 applies.

O

Turn to the full support.

Theorem 2.10 Suppose that P, is the full support iteration.

Assume that for every B < k, for every p,q,v € Qu, if p,q >* 1, then there is t € Q, such
thatt >* p,q. - -

Let S C k be a stationary such that, for every a € S, (Qqa, <p),) is forced (by the weakest
condition of P,) to be |a|T—complete. -

Then S remains stationary in V [G].

Proof. Suppose otherwise. Pick some p € P, and a name (' such that

plFCisaclubin k and CNS = 0.

10



Pick now M < H, and 6 € S, as in Theorem 2.7.

It is enough to find a condition r > p which forces “Q is unbounded in ¢” in order to derive
a contradiction.

Suppose that there is no such r. Let G5 C Ps be a generic with p [ § € Gs. Then, in V[G],

p\dI-Cg; N6 is bounded in 6.

We have § € S, so, by the assumption of the theorem, Qs is *—complete, and hence, P, /G5
is 0t —complete. Then there are p’ € P, /Gs,p’ >* p\ 0 and p < § such that

p/H— Qgéﬁégp.
Pick some t € Gs,t > p | 6 such that
t"p' Ik Cas N Cp.

Since t > p | §, there exists v < § such that t = ¢ [ v t\vyand t\ v >* p | [7,9). In
particular, t [y IFt\ v p' >*p\ .

Now work in M above thz condition p. Note that 7, p above are below ¢ and thus are in M.
Also p,C € M, and recall that

plFCisaclubin

Let ¢ € M be a P,-name such that p I- ¢ = min(C \ p+ 1). By Lemma 2.5, we can find
(in M) a P,-name for a condition ¢q; >* ;\ ~vsuch that p [y IF Ju < Kk g1 1F ¢ < p. Let
i € M be a P,-name such that p ij IFg1lF ¢ < p. In M, let u* be theNsuprgmum of all
gossible values of p, as forced by extensgns 0? pl ;I Then p* < § (since u* € M N k). By
elementarity, p | ’qul IF ¢ < p* holds in V' as well.

Finally, let p* € P, beNa condition such that ¢* [ v =t [ 7 and p* \ 7y direct extends both
the conditions ¢t \ 7~ p’, ¢1. Note that, since t \ v~ p’ and ¢, direct extend p \ v, the extra
assumption of the thg)re?n allows us to construct Sl;(/?h p*. -

Then on the one hand, p* forces that C'Nd C p; on the other hand, it forces that
min (C'\ p+1) < p* < §. A contradiction.

OJ

Turn now to the non-stationary support.

Theorem 2.11 Assume that the non-stationary support is used. Let S C k be stationary.
Then S is stationary in V[G,].

11



Proof. Let C be a P,—name and p € P, p Ik C is a club disjoint to S.

We construct:

1. <*-increasing sequence of conditions (p;: i < k),

2. decreasing sequence of clubs (C;: i < k), each is disjoint to the support of p;,
3. increasing continuous sequences of ordinals (v;: i < k), (;: i < K).

The sequence of conditions will be a fusion sequence, in the sense that, for every ¢ < j,
pi <" pjand p; [ v =p; | v,

Let po = p and ag = 0. Pick a club Cy disjoint to supp(pg). Let o = min(Cp).
Let G,, C P,, be a generic with py [ vy € G,,. Apply Lemma 2.5, inside V[G,,], and find
P1 € Pu/Guy, ) > po\ o and A} C k, |A}] < & such that pj IF min(C) € Aj.
Now back to V', we have |P,,| < k, hence there is A;, |A;| < k such that

D1 = Do [uoﬂg’l - min(C) € A;.

Set a; = sup(Ay).
Next, we pick a club Cy C Cj disjoint to supp(p;). Let vy = min(C \ v + 1).
Let G,, C P,, be a generic with p; [ v; € G,,. Apply Lemma 2.5, inside V[G,,], and find
Py € Pu/Gyypy > p1\ v1 and A C K, |A5] < & such that py IF min(C \ ag +1) € A7,
Now back to V', we have |P,,| < k, hence there is Ay, |As| < k such that

p2=p1 V1A(]\9J/2 IF min(C'\ a; + 1) € As.

Set ap = sup(As).

We do the same at each successor stage i < k of the construction.
Suppose now that ¢ < & is limit. Set a; = |J,_; oy, v = Uj<i v; and let p; be the coordi-
nateswise union of (p,;: j < 7). Note that the facts that (p;: j < i) is a fusion sequence,
v; ¢ C; for all j <1, and P, \ G,,41 is more than |i|-closed, ensure that p; € P, is a legitimate
condition. Let C; = i<

Finally, let p, be the coordinateswise union of (p;: ¢ < k). It is in P, since for every

C;. Pick v;41 = min(C;) \ v; + 1. Continue as above.

1 <7,p; <*pjand p; [ v; =p; | v; and A,.,.C; is disjoint to its support.
Now,
P IF{a | i is limit} C C.

But {a; | 7 is limit} is a club in V, and so, S N {«; | i is limit} # (). Contradiction.
0J
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Remark 2.12 A similar argument can be used to show that non-stationary support it-
erations preserve stationary subsets of k*.° The main difference is the use of elementary
substructures. We sketch the argument below.

Let S C k™ be stationary. Assume that p € P, forces that C is a club in " disjoint from
S. Pick an elementary substructure M < H, (for x high enough), such that |M| = &,
v :=sup(M Nk*t) € S, M is closed under less-than cf(vy)-sequences of its elements, and
M contains all the relevant parameters as elements (namely, &, P., S, p, C € M). We
assume cf(y) = k and fix (7;: i < k) cofinal in «y (the case where cf(y) < & is similar, even
simpler). Construct increasing sequences (p;: i < k), (Ci: i < k), (v;: i < k) as before, and
an increasing, continuous sequence {(q;: i < k) cofinal in 7, that dominates (y;: i < k).
The construction is internal to M, in the sense that each strict initial segment of the above
sequences belongs to M (but the entire sequences are external to M). The construction is
identical to the one from the proof of Theorem 2.11, with the minor adaption that for each
1< K, v < a; and

pir1 IFmin(C\ o; +1) < aiy1.

At the final limit step, let p, be the coordinatewise union of (p;: i < ). Then p, Iy € CNS,

which is a contradiction.

We proceed and discuss preservation of cardinals after forcing with P, with various sup-
ports. In the Easton support case, |P;| = k, and so k" is preserved. By Corollary 2.6
in [1], kT is preserved after non-stationary support iterations. Let us consider full support
iterations. Note that the Magidor iteration of Prikry forcings (from [11]) satisfies kT —c.c..

This could be generalized to a Magidor iteration of arbitrary Prikry-type forcings:

Proposition 2.13 Suppose that for every B < k, for every s,t,r € Qs, if s <
there is e € g, e > s BT Then P, satisfies k™ —c.c.

Qs b then

2
In general it turns out that ™ may be collapsed with full support iteration.

Proposition 2.14 Suppose that k is a measurable cardinal. Let P, be the full support iter-

ation of Col(a,a™) = {f | f € Sa™,& < a}, for every reqular o < k. Then k™ is collapsed

in VP,

Proof. Let U be a normal measure over .

We start with the following claim:

6The fact that ¥ itself is preserved as a cardinal is also required here, and it appears in [1], Corollary
2.6; we will discuss preservation of T in more detail in the rest of the subsection.
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Claim 1 Let p = (p(B) | f < k) € P,. Then there are A* € U, 7" < k and p* > p such
that p* | B IF dom(p*(5)) = 7%, for every g € A*.

Proof. For every regular f < k there are sg € Pz,s3 > p | 8 and Tg < [ such that
sg Ik dom(p(5)) = Tg.

Find Aj € U and py € P, such that py | § = s, for every 8 € Aj. For example, take
po = [B > sslu.

Then we consider a regressive function 8 +— 79 on Aj. Find Ay € Aj, Ag € U and 7° < &
such that 79 = 79, for every 8 € Ay.

Repeat the process with py replacing p and find A; C Ay, A, € U, p; and 7! such that

pi 1 8 dom(po(8) = 7
Continue by induction. Let A* = (1, __ A, and p* be the coordinatewise union of p,’s. Set

7 =Upeo ™

Then p* | 5 IF dom(p*(B)) = 7, for every 8 € A*, will be as desired.
[ of the claim. h

For every 7 < k, define a maximal antichain A, in P.. Proceed as follows.
Let us pick functions (h, | 7 < k) such that dom(h.) € U, for every a € dom(h.,), h, () <
at and [h, ]y = 7, for example £+ —canonical functions will do the job.
Fix 7 < k. Let A, be a maximal antichain in P, of cardinality ™ which consists of p € P,
such that:

(*)if for some B € U and v < %, the condition tp, = (tp,(®) | @ < K) is compatible
with p, then, for some B' € U, p > tp.,
where, for E' € U, tg,(a) = 0q, unless « € ENdom(h,)\7+1, and if « € ENdom(h,)\7+1,
then tp, (o) = {(7, hy())}, i.e. the value of the generic function for o at 7 is h,(«).

Let (p] | i < k1) be an enumeration of A..

Let G C P, be a generic. Define F : k — (k7)Y by setting F(7) =i iff p] € G.
We claim that such F is onto.
Suppose otherwise. Pick some p € G and n < T such that p I rng(F) C n.
Apply Claim 1. Let A* € U, 7" < k and p* > p be as in the conclusion of the claim.
Now for every v < k™, we can extend p* to a condition p” by adding a pair (7%, h,(a)) to
p*(a), for every a € A* Ndom(h,)\ v+ 1. Note that if v # +/, then p?,p"" are incompatible.
So, the set {p” | ¥ < k*} consists of k™ —many incompatible conditions.
Then, each of p”’s must be compatible with a member of A, with index below 7. Hence,
there is i* < n such that pL’ is compatible with k™ —many p?’s. Pick two of them ~y # .
By (*), then pl. > tp,,tg.,, for some B, B’ € U. However, v # 7 implies that there is
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a € BN B, such that h,(«) # h,/(c), and this is impossible due to the compatibility.
Contradiction.
.

We conjecture that the measurability assumption can be much weakened. However, the

following positive result can be proved:

Proposition 2.15 Suppose that there is a club C C k such that for every a € C, (Qa, <5 )
is forced to be at —closed. Then P, preserves k.

In particular, if k is not a Mahlo cardinal, then P, preserves k™.

Proof. Let p € P, and f be a name such that

pl- f ik — kKT

Fix a club C such that for every a € C, (Qa, <7 ) is forced to be a™—closed. Assume
also that for every a € C, for every 8 < a,TP5| < a. Let (a; | © < k) be an increasing
continuous enumeration of C'. Apply Lemma 2.5 and find py >* p,po [ a9 = p | ap and
no < kT such that py I £(0) < np.

Continue by induction and define a <* —increasing sequence (p; | i < k) and sequence

(n; | 1 < k) of ordinals below k™ such that
Lopi IF f(2) <m,
2. forevery i < j,p; [ s =pi | au,

There is no problem at limit stages 4, since (B, \ a;, <* ) is a; —closed since «; € C.

The second item insures that there is p* € P, such that p* >* p;, for every ¢« < k. Then

pmg(f) € (Jm.

<K
O]

3 Non-stationary support iterations

We assume GCH throughout as before. Let x be an inaccessible cardinal.
Let (P,,Qs: a < Kk, f < k) be a non-stationary support iteration of Prikry-type forcings,

with the properties stated in the introduction.
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Let I be a stationary subset of x which consists of singular cardinals g such that for
every v < i, | Py| < p.
Assume that-
Ifael, thenlrp, (P.\ a,<*) is a®-closed.

Note that for a singular cardinal «, we have IFp, (P, \ a, <*) is a-closed. We will need a
slightly more closure. A typical situation is where « is Mahlo, @), is trivial at every accessible

« and each forcing @), has cardinality below the least inaccessible above «.

Theorem 3.1 P, does not add fresh unbounded subsets to k.

Proof. Recall the following fusion lemma for the non-stationary support iteration of Prikry

forcings”:

Lemma 3.2 Let p € P,. For every f < k, let F(B) be a Pg-name for a <*-dense open
subset of P\ 8 above p\ B, and assume that this is forced by p | 5. Then there exist p* >* p
and a club C C K such that for every singular 5 € C, p* [ B 1= p*\ 5 € F(B).

Let G C P, be generic over V', and assume for contradiction that there exists a function
f € 2% which is the characteristic function of a fresh subset of k. Let f be a P,-name for
it, and assume that this is forced by some condition in GG. For simplici:c;/, assume that this
is the weakest condition.

Let ¢ € kNI be the least ordinal for which a new subset is added in the extension from
V to V [G]. Such ( exists, since the forcings @, (for a < k) have cardinality below x, and
at least one of them is non-trivial.

Note that ¢ € kN1, (P, \(,<* ) is (TT-closed. Pick a condition ¢ € P, which forces that
a new subset is added to ¢. For simplicity, assume that the weakest condition in P forces
this (else, work above a condition in P, whose restriction to P equals ¢).

We divide into two cases:

Case 1.® There exists u € ((,x) NI and a condition p* € P, which forces that the
following property holds:

dpeG,Ise P\ pVr >" s 3 <k Irg,m =71,
VE@ roll f1& p | f 1€, and the decisions are different.

"The fusion property for non-stationary support iterations is due to Friedman and Magidor [2]. A version
suitable for iterations of Prikry-type forcings appeared in [1]. The proof is basically given in lemma 3.3 in

[4]

81t basically repeats those of 4.11, [4].
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(here, G, denotes the canonical name for the generic set for P,). By extending p*, we can
decide the value of p in the statement above, and thus assume that p* > p. Let s be a
P,-name for s from the above property, and assume that this is forced by p*.

Let us apply the same methods as in the main lemma in [7]. We construct, in V', a
binary tree of conditions, ((p*, s,): ¢ € #>2) and a tree of functions (b, : o € #~2) such that

sp = s, and for every o € #72:
1. Vi <2, <p*,£am<i>> I i I'lh (baﬁw) = bo—().
2. bo~) L bg~(1).
3. Vi <2,p" Ik So—(iy =7 S5

4. If Th(o) is limit, then p* forces that s, is an upper bound, with respect to the direct
extension order, of (8 1¢: & < 1h(0)).

5. b, is an end extension of b, ¢ for every £ < lh(o).

Now assume that g C P, is generic over V with p* € ¢g. In V' [g], let h € 2<# be the
characteristic function of a new subset of p (such a new subset exists because p is above ().
h defines a branch through the binary tree, ((p*, snie): & < p). Since (spe: & < p) form
a <*-increasing sequence, there exists an upper bound s* € P\ p, which extends all the

conditions in the sequence. Thus, there exists an upper bound for the branch, of the form

(p*, s7). It forces that—
b= bue

E<p

is an initial segment of f. We argue that this must be a strict initial segment of f. Indeed,

VG

otherwise, (cof(x))V“*) < 4. But, since & is inaccessible, G, C P, is a forcing whose

cardinality is strictly below &, so it preserves cofinalities greater of equal to k.
Therefore, b is a strict initial segment of f, and thus b € V. So h can be defined, in V,
using the binary tree and the set b. This is a contradiction to the choice of h.
Case 2. For every p € (¢, k) N1, every condition in P, forces that—
Vp€ G, Vs € P\ uar >" s V& < Kk Vrg,r 2" 1,
VE Ifpr | J I &and pory [ J 1€ then the decisions are the same.

Define for every u < s

e(p) ={re P\ p:Vpe G, V¢ <k Vrg,ry =",
VE Ifp~re | f&and p~ry || f | & then the decisions are the same.}
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Claim 2 Suppose that u € ((,x) N I. Then e(u) is a dense open in (B, \ pu, <* ).

Proof. Just note that |G,| < pu* and (B, \ p, <* ) is " —closed.
O of the claim.

Given u € (¢,k) NI as above, the following set is also forced to be <*-dense open in
P\

d(p)={re P\ p:3ge2", rll—i[u:g}.

The <*-density of d(u) C P\ p follows as well from the fact that the direct extension order
of P\ u is more than p-closed.

We can now apply the standard fusion argument 3.2. There exists p € P, and a club
C' C k such that min(C') > ¢, and, for every p € C' N1,

plulbp\pedp)ne(p).

For each p € C'N I, there exists a condition in G of the form ¢, p \ p, where g, € P,,
which decides the value of f [ pu. The reason is that p [ u forces that p \ p is in d(p), and
thus the value of f | p is drevcided by the forcing P,.

For each such ;, qu is an extension of p [ p, and thus there exists a finite set b, C u such
that at every § € p\ b, q,(6) direct extends p(d) (as forced by g, [ 9).

The function p +— maxb, is a regressive function in V' [G], and its domain is the set
CnNI. CNI is stationary in V since [ is assumed to be stationary. By theorem 2.2, it is
also stationary in V [G]. Since & is still regular in V' [G], we can find an unbounded subset
S C k and an ordinal ©* < k such that for every p € S, b, C p*. By increasing p*, we can
assume that it belongs to C'N 1.

Now, shrink S further to stabilize the function pu — ¢, | p*. This is possible since S is
unbounded in &, and g, [ p* is a condition in P,- which has a small cardinality (and, again,
K is inaccessible in V' [G]).

So we can assume that there exists a condition ¢* € P,«, such that for every 1 € S, there

exists some direct extension r, € P\ p* of p\ p*, such that—

¢ rull £ T

and ¢*"r, € G.

9Tt is the only place in the proof where p++ —completeness is used.
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Recall that p* € C'N I and the condition p obtained by fusion above also satisfies that
plp*lEp\ p* €e(p*). Since ¢* > p | p*, the condition ¢* forces that, for every £ < k, any
pair of direct extensions of p \ p* which decide f [ &, decide this initial segment the same
way. -

It follows that ¢*"p \ p* decides rj: entirely, and forces it to be the following function of
V.

h = U {g € 2": there exists a P,--name for an extension 1 >*p\ ut,
HER\p*
such that ¢* " rlF f [ u=g}

which is a contradiction. O

Remark 3.3 Lemma 3.2 implies that V[G] F 2 = x*. Indeed, assume that A is a subset
of £ in V[G]. Let A be a P.-name for it. For every singular 3 < x, define in Vs the set—

F(B)={qe P\ B:3A5 C B, qlF ANJ = Ag}.

Note that § is singular and thus F(3) is <*-dense open. Let p* € G and C' C k be such
that for every singular g € C, p* | B I p*\ B € F(B). Then there exists a Pg-name Ag for
a subset of 3, such that p* I- AN B = (Ag)gp,- Then A= (A)g can be computed in V[G]
from the sequence (Ag: 8 € C). By using canonical names for bounded subsets of «, and

by GCH in V, there are at most x* such sequences. So there are at most k™ —many subset
of k in V[G].

The situation with higher cardinals was clarified in [4]. The following was shown basically
in [4], 4.11:

Lemma 3.4 P, does not add fresh unbounded subsets to k™, or to any cardinal A of V with
cof (A) > k.

Proof. The proof is a variation of the proof of theorem 3.1, and it basically appears in [4].
Assume that f is a P,-name for the characteristic function of a fresh unbounded subset of
A. Divide into cases as in the proof of theorem 3.1. Case 1 remains the same. Case 2 is

simplified, since the sets d(u) is no longer required. Indeed, in the notations of the proof of
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theorem 3.1, assume that p € P, is a condition and C' C k is a club, such that for every
peCnl,

plulkEp\p€e(u)
Now, work in V' [G]. For each £ < A, let g¢¢ € P, be an extension of p which decides f [ €.

Let be C & be a finite set such that, for every o € be, ge [olF ge() >* p(ar). Let pe < /iT)e an
upper bound on be. Since cof(A) > « in in V, the same holds true in V' [G] as well (by the
same proof as in corollary 2.6). Thus, there exists u* € C'N I such that, for an unbounded
S C A, pe < p*. By shrinking S, we can assume that, for some ¢* € P+, g¢ [,+= ¢*. Then
¢ satisfies that, for every { € S, there exists a direct extension ¢ € P\ p* of p \ p*, such
that ¢* " re || i [ £&. Now, as in the proof of case 2 in theorem 3.1, the condition ¢* " p \ u*

forces f to be the following function of V:

h = U {g I~ 2“: there eXiStS a Pp,*‘name for an eXtenSionL Z* P \ ,U*,
E<kt

such that ¢* " r Ik f [ £ = g}

which is a contradiction.
O

We finish with an application for iterations of Prikry-type forcings with the nonstationary
support. The referee of [10] asked if such an iteration, below a cardinal x, can add new

measurable cardinals below k. We show that the answer is negative!®.

Theorem 3.5 Assume GCH and let k be an inaccessible cardinal.
Let P, be a non-stationary support iteration of Prikry-type forcings satisfying the conditions
from the beginning of the section. Assume:

(x) For every Mahlo cardinal o < k which is not measurable in V, (P, \ o, <* ) is
at—closed.
Let X be a cardinal such that V1T < A(|P;| < A). Let G C P, be generic over V.. Then If X is
measurable in V[G], it was already measurable in V.
Furthermore, if the assumption (x) is strengthened to—

(xx) For every Mahlo cardinal o < K, (P, \ o, <*) is ot —closed.

then X\ is measurable in V[G] if and only if it is measurable in V.

0The answer for the same question in the full or Easton support is known to be negative, see [3].
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Proof. Assume first that (sx) holds and A is a measurable cardinal in V. If A > &, the Levy-
Solovay Theorem [12] shows that A is measurable in V[G]. If A < &, standard arguments
show that A\ remains measurable in V' [G | Py| (see [5]). If A < &, the forcing (P, \ A, <* ) is
AT-closed, so P, \ A does not add subsets to A and A remains measurable in V[G]. Thus, let
us concentrate on the other direction assuming (x).

We first recall Lemma 2.1 in [4]: given a forcing notion which does not add new fresh
unbounded subsets to cardinals of V' in the interval [/{, (2“)‘/} = [k, kT], every k-complete
ultrafilter in the generic extension extends a x-complete ultrafilter from V. Assume now
that « is measurable in V' [G], and let W € V [G] be a nontrivial k-complete ultrafilter on
a. If a > Kk, then by the results in this section, P, does not add fresh unbounded subsets to
a, o™, and thus W NV € V by Lemma 2.1 in [4]. Thus, assume that o < k, and assume
that « is not measurable in V. So, «a is a Mahlo cardinal in V. If the forcing (P, \ o, <* )
is a™t—closed, then W € V [G | P,].

However we assumed only that (P, \ «, <* ) is a"—closed. In this case W need not be in
VI[G | P,].

Proceed then as follows. Work in V' [G | P,]. Let (4; | i < a') be an enumeration of
all subsets of a (such enumeration exists by applying remark 3.3 on P,). Define a <* —
increasing sequence of conditions (p; | ¢ < «a) in V[G [ P,| such that for every i < «,
pillAi € W. Set W' = {A; | i < a,p; IF A; € W} Then W’ will be an a—complete
ultrafilter over o in V' [G | P,].

Apply now 3.1 and 3.4 to P,. It follows that no fresh subsets are added to «, a™. Now,
by Lemma 2.1 from [4], W/ NV € V is a nontrivial a-complete ultrafilter over o in V. A
contradiction.

OJ

Remark 3.6 1. The closure assumptions made on (P, \ o, <* ) are needed.
For example, start with V' = L[U], where U is a normal ultrafilter over a. Iterate
Cohen(B),f < a. Let V' be this model. Then « is not a measurable in V. Force with
Cohen(a) over V. Then « will be a measurable in the extension. Here we take ()g to

be trivial for every f < a and @, = Cohen(a).

2. Also, the assumption V7 < A(|P;| < A) is necessary. Just use the previous example

(with A = a). Qo = Cohen(a) resurrects measurability of a.

3. Note that a measurable cardinal in V' need not be such in V|[G] without assuming (x).

Just use the Prikry forcing or the iteration of such forcings.
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4 On fresh sets in the Easton support iterations

We start with an easier case of the Easton support iterations with x being a Mahlo cardinal.

rk—c.c. of the forcing will be used to show the following:

Theorem 4.1 Suppose that k is a Mahlo cardinal and P, is an Easton support iteration.

Then no fresh sets are added to k.

Proof. Suppose otherwise. Work in V. Let A be a name of such subset.
Define a tree T' of possibilities as follows. Fix an increasing enumeration (k¢ | £ < k) of
all inaccessible cardinals below k.

For every £ < &, let
Leve(T) ={x Cre | Ip € P pl- ANke =}

Let z € Lev,(T),y € Levg(T). Set x >y iff a > f and x Nkg = v.

Then (T, <7 ) is a k—tree, since k is an inaccessible.

Lemma 4.2 (T, <7 ) has a k—branch.

Proof. Let (z, | v < k) be an enumeration of 7.
There is a club C' C k such that for every ~,d € C the following hold:

1. ky =1,
2. the level of z, > 7,

3. if v < 4, then the level of z, < 9.

For every v € C, pick p, € P, such that p, IF AN ke, =z, where §, > v denotes the
level of z.,.

Now, k is a Mahlo cardinal and an Easton support was used, hence there is a stationary
S C C such that for every «,d € S, p, and p; are compatible.
Take any two v < ¢ in S. Then x5 N &, = x, due to the compatibility of p, and ps.
So, {x, | v € S} is a k—branch.
O

Let now b = {x; | i < k} be a maximal k—branch in 7. For every ¢ < k fix p; € P, which

witnesses that x; € T'.
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By the assumption made, | J._, x; # A, since this union is in V.

i<k
Then for every i < k, there is i’ > 7 such that z; is a splitting point of 7.

Denote by y; an immediate successor of x;; which is not in b. Let ¢y be a condition which
witnesses that y, € T'.

Let C' C k be a club such that for every iy,iy € C,i; < iy, we have @} < is.

The next lemma provides the desired contradiction, since P, satisfies k—c.c.

Lemma 4.3 The conditions {q; | i € C'} are pairwise incompatible.

Proof. Let i1 < i5 be in C. Then
g, - AN Ky # Ty 41

However,

Qi IF AN Ky = 44,

since Yy, >1 Tiy >1 Tij 41 This is possible only when qi, and qi, are incompatible.
OJ

Let us give an example of the Easton support iteration P, which adds a fresh subset,
however we give up here the assumption that |g5| < K.

Let (ks | B < k) be an increasing sequence of measurable cardinals above an inaccessible

Let (P,,Qp | o < K, 8 < k) be an Easton support iterations of the Prikry forcings, i.e.
for each 3 <A/J£, Q3 is the Prikry forcing with a normal ultrafilter over xg.

Let G be a generic subset of P,. For every < k, let bg be the Prikry sequence added
by G to Kg.

Lemma 4.4 The set
A={a < k| the first element of the sequence by, is 0}

1s a fresh subset of k.

Proof. Every initial segment of A is in V' due to the support used. On the other hand A ¢ V/,
since every condition in the forcing P, should be bounded in k, and so it can be extended
to one which forces by, (0) = 0 or to one forcing by, (0) # 0.
O

Let us turn now to a general case, i.e. we assume only that « is an inaccessible. Our aim

will be to prove the following:
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Theorem 4.5 Let k be an inaccessible cardinal and (P,,Qp | o < K, < K) be the Easton
support iteration of Prikry-type forcing notions. Let I bg a stationary subset of k which
consists of singular cardinals p such that for every v < u,|P,| < p. Suppose that for every
a€l,lbp, (P, \ a,<*) is atT-closed.

Let G, C Py be a generic. Then, in V|[G,], there is no fresh subsets of k.

Remark 4.6 Similar results were proved in [4] for cardinals above k. The proof there is

based on the fact that |P;| = k and it is much easier.

Proof. Let G, be a generic subset of P,.

We would like to show that there is no fresh subset of x in V[G,].

Suppose otherwise. Work in V. Let A be a name of such subset and let f be a name of
the characteristic function of A. Fix some p € GG, which forces this. -

Let ¢ < & be an ordinal for which a new subset is added in the extension from V to V [G].
Such ( exists, since the forcings @, (for @ < k) have cardinality below &, and at least one of
them is non-trivial. By increasing if necessary, we can assume that ( is a singular cardinal.
Then (P, \ ¢,<*) is more than (-closed. Thus, there exists a condition ¢ € G, [ P which
forces that a new subset is added to (. For simplicity, assume that p |  forces this.

Given a condition r € P, let us denote by r() its y—th coordinate,

Le. r=(r(y)| v < k).

We divide into two cases as in Theorem 3.1.

Case 1. There exists 1 € ((,x) NI and a condition p* € P, which forces that the
following property holds:

dpeG,Ise P\ pVr >" s 3 <k Irg,m =71,
VE@ roll f1& p | f1&),and the decisions are different.

Case 2. For every p € (¢,x) N1, every condition in P, forces that—

Vp € Gy Vs € P\ pdr 2" s V€ < k Vrg,m 271,
VE Itp ol fI&and p~ry || f [ & then the decisions are the same.

The treatment of the first case is exactly as in Theorem 3.1. Let us deal with the second

case. As in Theorem 3.1, we define for every p < K

e(p) ={re P, \p:Vpe G,V <k Vrg,ry =",
VE Ifp~re| f&and p~r || f | & then the decisions are the same.}
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By Claim 1 of 3.1, it is <* —dense open subset of P, \ u, for every u € ({,x) N I. Again,
here is the only place where ™+ —closure of the direct order on P, \ p is used.
Given a generic G, C Py, p € G, define in V[G,],

S ={{ <k |¢is alimit ordinal and 3¢ >* p,t € G such that t [ { IFp, £\ &[|pacANE)}

For every £ € S, fix some t* € G, such that ¢ >* p and ¢ [ £ IFp, t°\ €]|paeANE. So,
there is p* € G | Pe,p* > 15 [ &, (p°)"t° \ € IF ANE = ag, for some ag € V. Then there is a
finite b* C & such that p* \ b* >* p | (€ \ b%).

Suppose for a moment that S is stationary in V[G,].

Then we can find a stationary subset S’ of S and a finite b such that for every & € S, b¢ = b.
Now we can freeze p* | max(b). Denote max(b) by u*.

Let p € I be a cardinal above p*.

Consider the set e(u) defined above. It is <* —dense open subset of P, \ p, in V[G,,| above
p \ . In particular there is r € P, \ u,r >* p \ u such that

for every p' € G, for every £ < k and for every 1o, >*r
V| Ifp'"rol|]ANE and p"ri||A N ¢ then the decisions are the same.

Recall that t& >* p and p* \ u* >* p | (u*, &), for every £ € S’. If we were able to conclude
from this that p* \ g >* 7, then it will imply that A € V. However it need not be the case
since the support of r may be bigger than those of p \ 1 and incompatibility may occur on
coordinates outside of supp(p).

Let us argue that it is possible to overcome this obstacle.
Work in V. Set pg = p. Use Lemma 2.5 to find ¢ >* p and ug > sup(supp(p)), o € I such
that ¢ IF pu* < pyp.
Then, we use the density of e(uo) to find 79 >* ¢ \ po such that

q | polFp,, To € e(po).

Set p1 = ¢ [ wo™ro.

Next, we run the argument above with p = py replaced by p;. Again, using Lemma 2.5 find
@ >* pp and py > sup(supp(p1)), po + 1,1 € I such that ¢; IF p* < pyp, where p* is now
defined using p; instead of p. -

Then, use the density of e(u1) to find 71 >* ¢; \ pq such that

@ [ lp, 1 € e(p).
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Set po =q [ 1771
Continue by induction and define p,,, q,, 7y, jin, for every n < w.

Finally set f1, =, -, ttn and p, = U,,c, Pn = ¢ = U,,<,, @ Then, for every n < w,

Do | i IF Do \ i € €(ptn),

since py, \ pin, =" 1, € e(py,) and e(py,) is dense open. Also, sup(supp(p,,)) = fho-
Pick now a generic G C P, with p, € G. Let S,, be defined as S above only with p,,
replacing p. Assuming its stationarity, define p* >* p,,,p* € G | P for £ € S’ exactly as
above. Then there will be a stationary S’ C S and n* < w such that for every £ € 5,
P T (o, &) =% oy | (i, €), since sup(supp(p.,)) = p and a non-direct extension is used at
finitely many places only.
Shrink S’ further to S” and stabilize the value of the function & +— p* | uf..
Finally, we use that p, \ fn+ € €(fin+).

Hence, the following lemma will complete the proof. We prove it for the initial p, but

the same argument works for S, or any S, with z > p.
Lemma 4.7 S is stationary in V|[G,].

Proof. The argument will be similar to those of 2.2.

Suppose otherwise. Let C' C k be a club disjoint from S. Assume that p € G, forces this,
otherwise replace it by a stronger condition doing this.

Work in V. Pick an elementary submodel M =< H, such that

1. |[M]| =6 <r,

2. MNnk =24,

3. cof(§) < 4,

4. ©tO)>)N C M,

5. H,PK,Q,p,[EM.

Pick a cofinal in  sequence (0; | i < cof(d)) consisting of singulars and with dy > cof(9).
Consider—
D’={r>p|3c<k rlrc=min(C\d)}.

Clearly, D is a dense open and it belongs to M.
Apply Lemma 2.3. Then there will be oy < k and gy >* p,qo | cof(d) +1 = p | cof(d) + 1,
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in M such that for every r € Py, 7 >p, qo [ oo there is 7’ >p, r such that 7"\ ap € D.

So, for every such 7’ there is ¢(r') < k such that
"o \ ap IF ¢(r") = min(C'\ dy).

Note that P,, € M. Hence all ¢(r’")’s are in M. Also |P,,| < k. Hence their sup is below &,
and then, by elementarity, in M. Denote it by ¢f. So,

qo IF min(C'\ dg) < .

Define, for every 7 < k,

D;={reP[r>"pand I €r\7 r[lFp (r\Ellrp AN}
Claim 3 D, is <* —dense open above p.

Proof. Set 19 = 7+ 1. Consider

D(ro) ={r € P:|r Lpor(r>pandr| ANnm)}.

By Lemma 2.3, there are ap and ¢ >* p such that

qlaglF3beGa, b qg\ag | AN

If ag < 79 then we are done. Suppose that ag > 79. Consider D(qy) and again, using Lemma
2.3, pick oy and ¢; >* ¢ such that

qloalFIeG, b q\ar | ANae.

If oy < ap, then ¢ € D(ap) and we are done. If ay > o, then continue and define in the
same fashion ay, ¢o etc.

Suppose that the process continues infinitely many steps. Then we will have

<o <.<og<..andgp<"'¢< L <q < i<w.

Let o* = |J,., a; and ¢* >* ¢;, for every i < w. Let G C P, be a generic with ¢* € G. For
every i < w, let G, = G | P,, and Gox = G | P,».

Now, for every i < w, there are 1,1 € G,,,, and a; € V such that

Tiv1 Qig1 \ Qg1 IF ANa; = a;.
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Therefore,

—~ %
Tiv1 ¢ \Oéi+1 Il—éﬂaz:al

Set a =
Tiv1q | [aig1, @) belongs to G,«. So, there is r € G, such that

icw @i Then, in V[G.-], ¢°\ a* IF AN a* = a, since each condition of the form

rg\a"IFANat =a.

Hence,
riFp. (¢7\ oz*||é Nna*).
The only requirement on G+ was that ¢* [ o* € G,+. Hence,

¢ la"lFg"\a*[[ANna”

and so ¢* € D,.
(1 of the claim.

Consider De;. It is in M, as well. So, inside M, we can pick § > ¢5,& € [ and &1 >* qo
such that to [ cf(d) +1 =p [ cf(d) + 1, and-

to [ o lFpe, o\ Sollpaen A N &o

and—
to s mln(C \ 60) < 50.

We continue the same process and construct a <* increasing sequence (¢;: ¢ < cof(d)) and

(& i < cof(6)) such that each strict initial segments of the sequences is in M, and-
o t; [ cof(6) +1=p ] cof(d) + 1.
o i [ &R, ti\&GllpagANG.
o t; IFmin(C\ §;) <& (furthermore, for each successor i, t; IF min(C'\ §;) < &).

The successor stages in the construction are as above: first, ¢;41 >* t; and ¢, ; > § are
constructed in M, such that g;1 [ cof(6)+1 = p [ cof(d)+1 and g;11 IF min(C\diy1) < ¢jyy.
Then, t;11 >* ¢;+1 is constructed inside M, such that ¢;; [ cof(6) + 1 = p | cof(d) + 1, and,

*
for some &1 € 1\ ¢f 4,

tiv [ G Ibp,  ti \ Gl Poen A N &g
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At limit stages of the construction and at the stage cof(d) itself we would like to take
an upper bound of the sequences constructed so far. So, assuming that i* < cof(d) is limit
and (t;: 1 < i), (&: 1 < i) were constructed, let ¢t~ be a <*-upper bound of (t;: i < i*)
and &+ = sup{¢;: i < i*}. Taking an upper bound of the sequence of conditions is possible
since for each i < cf(d), p; | cf(0) +1 = p [ cf(6) + 1, and (P, \ cof(d) + 1,<* ) is more
than cof(d)-closed. The fact that <)) C M implies that each strict initial segment of
(t; | i < cof(9)), (&:1i < cof(d)) belongs to M (but the entire sequences, and the limit
t* = teof(s), are external to M).

Finally, letting ¢* = t.of(5), we have t* I- § € €, since C is forced to be closed by p.

Let G C P, be a generic with t* € G. Set G5 = G | Ps. Then for every i < cof(J),
ti | 0 € Gs. Hence, there are r; € G¢,,rm; > t; [ & and a; € V such that

Set a = UKCOW) a;. Then, in V[G], AN = a, since each ,7¢t; \ & is in G.
Remember that the only requirement on a generic set G was that ¢t* belongs to it. Hence,
back in V,

t 1o lkp t*\ d|p s ANG.

So, t* forces 0 € S, and, as was shown above, 0 € C' as well. Contradiction.

O

5 No fresh subsets of x in the full support
Our aim will be to prove the following :

Theorem 5.1 Let k be an inaccessible cardinal and (P,,Qs | o < k, < k) be the full
support iteration of Prikry-type forcing notions. Suppose ;;Lat for every B < k, for every
T,Y, 2 € gg, if 2 S”’Qﬁ x,y and x,y are compatible according to < Qs then they are compatible
according to Sf@ﬁ’ i.e. there is e € g@,e Z*Q,B x,y. 1

Let G, C Py be a generic. Then, in V|G,], there is no fresh subsets of k.

Remark 5.2 More restrictive results were proved in [4] for cardinals above k. The present

proof can be easily modified for higher cardinals.

HUNote that if <=<*, then this holds trivially. Prikry, Magidor, Radin forcings, their supercompact
versions, etc., have this property. Actually, any reasonable forcing of this type has this property.
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Proof. Let Gy, be a generic subset of P;.

We would like to show that there is no fresh subset of x in V[G,].

Suppose otherwise. Work in V. Let A be a name of such subset and let f be a name of
the characteristic function of A. Fix some p € G, which forces this. -

Let ¢ < k be an ordinal for which a new subset is added in the extension from V to V [G].
Such ( exists, since the forcings @, (for @ < k) have cardinality below x, and at least one of
them is non-trivial. By increasing if necessary, we can assume that ( is a singular cardinal.
Then (P, \ ¢,<*) is more than (-closed. Thus, there exists a condition ¢ € G, | P which
forces that a new subset is added to (. For simplicity, assume that p [ ¢ forces this.

Let I be a subset of k which consists of singular cardinals 7 such that for every p <
T,|P,| <.

As before, we divide into two cases:

Case 1. There exists p1 € ((,x) NI and a condition p* € P,,p* > p [ u which forces the
following property:

There are p’ € G, and s € P, \ p such that s > p\ p, and, for every r > s, if

r(p) = s(u),r(u") = s(u"), then the following holds: there are £ < x and ro,r; >*r
such that ro(u) = r1(p) = r(p), ro(u*) = ri(u™) = r(u"), and, additionaly,

VE®Q ,\fJ PE p | I, [ €), and the decisions are different.

Above, G, denotes the canonical name for the generic set for F,.

By extending p*, if necessary, we can decide the value of p’ in the statement above, and thus
assume that p* > p'. Let s be a F,-name for s from the above property, and assume that
this is forced by p*.

Note that here we do not assume p™™—completence of the direct order. Additional
requirements are included in order to compensate this. Still, the treatment of this case
repeats completely Case 1 of 3.1.

Case 2. For every p € (¢, k) NI, every condition in P, stronger than p [ p forces (and
so, p | u forces) that—

For every p' € G, and s € P, \ p1 such that s > p\ u, there exists 7 >* s with
r(u) = s(u),r(ut) = s(u™), such that for every £ < k and ro,ry >* 1,

if ro(p) = r1(u) = r(w), ro(u") =ri(u") = r(u"), then
VETIfp ro | An&and p" ry || ANE then the decisions are the same.
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For every p € (¢,x) NI, define (in V[G,])

¢ (n) ={r € P\ p: forevery p’ € G,,§ <k and ro, 7 >" 7,

if ro(p) = r1(p) = r(n), ro(u") =r1(p") =r(u"), then
VE Y ro| f1&and p ri| f | & then the decisions are the same.}

Claim 4 For every p € (¢,k)N 1,
/(1) is <*-dense in P\ u (above p\ u).'?

Proof. Note that |G,| < u*, the forcing (P, \ p**) is p**—closed and the coordinates
i, 't do not change. Hence, for every given v’ € P, \ u, we can construct a <* —increasing
sequence of a length |G| of conditions stronger than r’, which takes care of each p’ € G,.
Then its upper bound will be in e(u).
(] of the claim.

Given a generic G, C Py, p € G, define in V[G,],

S ={{ <k |¢isalimit ordinal and 3t >* p,t € G such that t [ { IFp, £\ &[|pacANE)}

For every £ € S, fix some t* € G, such that ¢ >* p and ¢ [ £ IFp, t°\ €]|paeANE. So,
there is p* € G | Pe,p* > 15 [ &, (p°)"t° \ € IF ANE = ag, for some ag € V. Then there is a
finite b* C & such that ps \ b* >* p | (€ \ b%).

The argument of Lemma 4.7 applies without changes in the present situation, and shows
that S is stationary (in V[G,]).

Then we can find a stationary subset S’ of S and a finite b such that for every & € S,
b* =b. Let p € I be any cardinal above max(b). By shrinking S’, we can freeze p® | .

So there exists a condition ¢ € G, N P, extending p [ i, and, for every { € S’, ¢ forces
that there exists a direct extension r& >* p\ p such that ¢~r¢ decides AN ¢ (actually, we
can take r& = p® \ u” ¢\ € and also get that ¢7r € G,).

If the following holds,

(N): For every < K, for every s,t,r € gg, if s g*gﬁ t,r, then there is e € Qg,e Z”QB

t,r.13

then we are done: indeed, ¢"p \ p forces that—

A= J{xc&XxeVarqlbr > p\pmqg kX =A4ANE}

E<k

121t need not be open.
BFor example if P, is the Magidor iteration of Prikry forcings. Also note that we do not need to split
into Cases 1,2 in this type of situation.
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which is a contradiction since the set to the right belongs to V.
Let us deal with the general case. We assumed the following,

(3): For every f < k, for every x,y,z € gg, if 2 §f@ﬂ x,y and x,y are compatible
according to <Qu then they are compatible according to <Q; i.e. there is e € Qﬁ,@ 21‘@5
x, 9.

Now, P, is a full support iteration. So, (3) implies -

(A): For every u,v,w € Py, if w <} u,v and u,v are compatible according to <p,_, then
they are compatible according to S};N.M

By shrinking S, we can assume that for every &,& € S, 7¢ | utt = ¢ | put*. Denote
by w the stabilized value. Assume that s > w™p\ (1™ + 1) is a condition forcing the above
picture. In other words, s forces that for some stationary S C k, and for every § € S, there
exists a condition t* € G, t¢ >* p, and a condition p* > ¢ [ £ such that p*~ ¢\ £]|ANE, and
PTHENE T T+ =w.

Let » € P\ u, 7 >* s\ 1 be a condition such that s | p Ik r € € (u). We argue that
s* =s | ur forces that IJ e V. Let—

g=Jlge2: X eV, Iu> s"\p" +1,(s" [ p* +1)"ulb g = f £},

E<k

Note that since s* \ p € €'(u), ¢ is a function. Furthermore,

sl f=g.

~

Indeed, assume that G’ C P, is a generic containing s*. Let & € S’. Then there
exists some v >* p\ (uT + 1) in GNP, \ pt + 1 such that (s [put +1)"u || f | £ and
(s | wt+1)"u € G (since this was forced by s). By (3), u,r\ (u* + 1) are g*—cgmpatible.
Let u* >* u,r\ (™ +1). Then (s* | ut + 1)"u* witnesses the fact that f [ £ =g | £ Since
this is true for every £ € S, we get r]: =gecV. O h

Lemma 5.3 Under the assumptions of the previous Theorem, P = P, does not add fresh

unbounded subsets to any \ with cof(\) > k.

Proof. Let A € V[G,] be a fresh unbounded subset of A with a characteristic function f.

Proceed as in the proof of Theorem 5.1. Case 1 is now formulated as follows!®:

141t need not be the case for Easton or non-stationary support, since then the support of w may be strictly
smaller than those of u, v, and u,v may disagree on a common coordinate outside the support of w.
15The only difference is that ”3¢ < k7 is replaced with ”3¢ < \”.
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Case 1. There exists p € ((,x) NI and a condition p* € P,,p* > p | p which forces the
following property:

There are p’ € G, and s € P, \ psuch that s > p\ i, and, for every r >* s, if

r(p) = s(u),r(ut) = s(u™), then the following holds: there are & < X and ro,r; >* r
such that ro(u) = ri(p) = r(u),ro(u*) = ri(u*) = r(u"), and, additionaly,

VE®Q 1l RS P | J 1€), and the decisions are different.

The treatment of case 1 remain the same. Let us concentrate on Case 2, which is the
following:
Case 2. For every p € (¢, k) N1, every condition in P, stronger than p [ p forces (and so,
p | p forces) that—

For every p' € G, and s € P, \ pu such that s > p\ u, there exists 7 >* s with
r(u) = s(p),r(ut) = s(u™), such that for every & < X and ro,ry >*r,

if ro(p) = ri(u) = r(w), ro(u") = r1(u") = r(u"), then
VEIfp ro | An&and p ry || ANE then the decisions are the same.

As before, for every p € ((,x) NI, p | p forces that the following set is <*-dense in P, \ pu:

¢ (n) ={r € P\ p: for every p’ € G,,,& < X and ro, 71 >" 1,

if ro(p) = r1(u) = r(w), ro(u") =ri(u") = r(u"), then
VEItY ro| f1&and p ry || f | £ then the decisions are the same.}

Now proceed in the following way. For every & < A, let p* € G, be an extension of p which
decides ANE. Let b* C & be a finite set such that for every o ¢ b, p* | a IF p*(r) =% p(a).
Since cof(\) > K, we may find an unbounded S" C k* and a finite b C &, such that for every
£e€8, b =b. Let u€ (¢,k) NI be a cardinal above max(b).

Thus, there is S’ C A stationary, such that for every £ € S’, a condition of the form
p° I p*\ p € Gy decides f | € and has the property that p¢ \ 1 >* p\ p. The stationary
set S’ replaces the set S’ fron the second case of Theorem 5.1, and, from here, the proof is

completed exactly as there. [

6 The Approximation and cover Properties

Definition 6.1 (Hamkins [8]) Let ¢ be a regular uncountable cardinal, and let N C V' be a

transitive inner model containing the ordinals.
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1. N has the d-cover property if for every A € V., A C N such that |A| < §, there exists
B € N with |B|Y < § such that A C B.

2. N has the d-approximation property if for every A € V, A C N, the following are

equivalent:

(a) Ae N.
(b) A is §-approximated in N: that is, for every X € N with |X|V <§, ANX € N.

The properties were introduced by Hamkins. One of the central application of the prop-
erties is the absorption of large cardinals of V' above x into N, whenever N C V is an inner
model of V' with the k-cover and approximation properties (see [8] for a detailed discussion

about that). One example of this phenomenon is the following Lemma.

Lemma 6.2 Let k be a reqular uncountable cardinal. Assume that N CV as above has the
K approzimation property. Then every k-complete ultrafilter W € V' whose underlying set
is some X € N, extends a k-complete ultrafilter of N. In other words, for every such W,
WNN e N.

Proof. In N, fix an enumeration (X,: a < (2X)™) of the powerset of X. Let A = {a <
(XN X, € W}. It suffices to prove that A € N, and, by the s-approximation property,
it suffices to prove that A is k-approximated over N. Indeed, assume that B C (2|X ‘)N has
size less than k, and let us argue that AN B € N. Since W € V is k-complete, the set—

< N Xa>ﬁ N X\X,

a€B,XqeEW a€EB, X0 ¢W

belongs to W, and in particular non-empty. Pick x in this set. Then AN B ={a € B: z €
X, }, and this definition is carried out in N. [

Lemma 6.2 is often referred to as ”"weak universality”. We remark that the x-cover and
approximation properties imply a stronger form of universality that involves extenders, which

is referred to as ”Woodin’s Universality Theorem”:

Theorem 6.3 (Woodin) Let k be a reqular uncountable cardinal. Assume that the extension
N CV as above satisfies the k-cover and approrimation properties and E € V' is a (K, \)-
extender. Then ENN € N,'° provided that, for every A€ P(\)N N, jg(A)N X € N.

16We view E as the sequence ((a, A): a € [\]<* and a € jg(A)), so ENN is the N-extender whose derived
measures are the restrictions of the derived measures of E.
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Goldberg asked whether V' has the k-cover and approximation properties inside V[G],
where G C P, is generic over V' (this is Question 1.7; P, is as in Subsection 1.2). Our goal

in this section will be to provide an affirmative answer, see Theorem 6.6.

Lemma 6.4 (Goldberg) Let k be regular. Assume that V' C V' is a cardinal preserving
extension which has the k™ -cover property, and does not add fresh subsets to k. Then it does

not add fresh subsets to any ordinal of cofinality (in V') k.

Proof. Assume that cf(a) = k and A C « is fresh over V. Fix in V an increasing continuous
cofinal sequence (ag: ¢ < k) in a. The set Y = {ANag: & < k} € V' has size k. By
freshness of A, Y C V. By the xT-approximation property, there exists a set X € V of size
k that covers Y. In other words, for every £ < K, ANag € X. By shrinking X, if necessary,
we can assume that every element of X is a bounded subset of a.

Enumerate X = (z,: v < k) € V. Then the set B = {v < k: 3 < K, ANae = ,}
is a fresh subset of k. Indeed, for every v* < k, let & < k be a limit ordinal, such that
sup{sup(z,): ¥ < v*} < ag. Since AN ag € V, it can be used to define in V' the set
Bnv ={v<v': 3 <& v, =(ANag)Nas}. So each strict initial segment of B belongs
to V. However, B ¢ V since A = |, 7, would belong to V' if B belonged to V. So B is a

fresh subset of xk over V', which is a contradiction. [

We proceed and prove the k-cover property. We will actually prove a bit more - the
kT-cover property.
Theorem 6.5 Let P = P, be as in subsection 1.2. Let G C P be generic over V. Then:

1. 'V satisfies the k-cover property in V|[G].

2. If the Easton or nonstationary support are taken, V' satisfies the k*-cover property in
VI[G].

3. If the Full support is taken, V satisfies the k™ -cover property in V[G], provided that for
every a < K, (Qa, <0, S*Qa> satisfies the following property: for every x,y,z € Qa,
if 2 <, %,y then x,y are <*-compatible.

Proof.

1. We prove that V' has the k-cover property. Let A € V|G| be a set of ordinals of size

< k. Assume that ( < s and (a¢: § < () is a sequence of P-names for an enumeration
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of A whose order type ( is forced, by the weakest condition, to be below x. By Lemma
2.5, there exists p € Gr;nd (* < Kk such that p I ¢ < (*. Assume for simplicity that p
is the weakest condition (else, work above it). Work in VG N Pr+41) and construct a
<*-increasing sequence (ge¢: & < ¢*) of conditions in P\ (* + 1, and a sequence of sets
of ordinals of size < r, (A¢: & < ¢*) such that for each §{ < (*, g¢ I a¢ € A¢ (Where
ae is defined to be 0 in the case where £ > (). Note that the construction is done by
a successive use of Lemma 2.5, and we haveAénough closure at limit steps. Finally, let
¢* be the coordinatewise supremum of (ge: & < ¢*), and A* = [J{A¢: € < ¢*}. Then
A* has size < k. So ¢* € P\ (*+1and ¢* IF A C A%, but ¢*, A* were constructed
in V|G N Pr«11]; since Pr«yq has size < k, we can find p € P, and A** in V such that
A" <k and pl- A C A™.

. If the Easton support is taken, then |P| = k and generic extensions with P have the
kT-cover property (as any other extension with a k™-c.c. forcing). Thus, let us take
care of the nonstationary support case. Let A be a P-name for a set of size s, and
pick P-names (a¢: § < k) for an enumeration of A. Following the standard fusion

argument, we construct sequences:

o (pe: & < k) an <*-increasing sequence of conditions.
e (1¢: € < k) a continuous increasing sequence of ordinals in k.

o (C¢: & < k) a decreasing sequence of clubs in x, each C¢ disjoint from the support
Of pg.

o (Ac: € < k) a sequence of sets of size < k in V, such that, for each & < &,
De [+ (3 € A{.

We make sure during the construction that for every & <, pe [ ve +1 =pg | ver +1,
and vg € Cy.

The construction is a standard fusion construction. Assuming pe, v¢, Ce, A¢ were cho-
sen, let v¢y 1 be the least point of C¢ above ve. Let pey1 be a condition such that
Pet1 | Ver1 +1 =pe | Vep1 + 1, verr € supp(pes1), and peyq \ veyq + 1 decides the value
of a¢ up to < s possibilities (using Lemma 2.5), where the set of those possibilities
belongs to V[Q N Pei1]; as usual, we can assume that for some A¢ € V' of size < &,
Per1 IF ae € Ag, since Peyy has size below . Finally, let C¢yy be a sub-club of C¢
disjoint from the support of pey;.

In limit steps, take ve = g, ve and pe that satisfies pe | ve = Ugoepe | ve + 1,
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ve & supp(pe), pe \ ve + 1 is <* above the pointwise supremum of (pg \ ve +1: & < &)
and pe I a¢ € Ag for some A in V' of size < k.

This concludes the construction. Finally, let p* = Ug <o [Ve+1and A" = Ug o Ae.
Then p* IF A C A* and |A*| < k.

3. It suffices to prove that the additional assumption imposed on P ensures that P has the
kT-c.c.. Assume that (p;: ¢ < k™) is a sequence of conditions. Pick S C k™ unbounded
and a finite b* C & such that for every ¢ € S, p; \ maxb* + 1 >* 0 p\maxb*41- Denote
B = maxb* + 1, and, by shrinking S C ', we can assume that for every i # i’ in S,

pi | B=py | B. It follows that for such ¢ £ ¢ in S, p;, pi» are compatible.
O

We are now ready for the proof that P, additionally satisfies the k-approximation prop-

erty.

Theorem 6.6 Let P = P, be as in subsection 1.2.
Assume that P does not add fresh subsets to ordinals of cofinality > k. By the results of the

current paper, this holds, for instance, if one assumes:

1. There exists a stationary set I C k consisting of singulars, such that for every u € I,

o Ify < p then |P)| < p.
o Ikp, (P \ ) is p**-closed.

2. In the case where the full-support iteration is taken, assume also that for every a < k,

(Qm <Qo S*QQ satisfies the following property: for every x,y,z € gm if z S*,Qﬂ T,y
then x,y are <*-compatible.

Let G C P be generic over V. Then V' has the k- cover and approximation properties in

vial.

Proof. The k-cover property was proved in the previous theorem. Thus, we concentrate on
the approximation property.

First, let us justify that the above assumptions suffice to prove that, for every A with cof(\) >
k, P = P, does not add fresh unbounded subsets of A. Indeed:

e For cof(\) = k, it suffices to prove that no fresh subsets are added to x, by lemma 6.4
and the fact that P has the k*-cover property (proved in Theorem 6.5). The fact that

no fresh subsets are added to k follows from Theorems 3.1, 4.5, 5.1.
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e For cof(\) > k: if the nonstationary support is taken, this follows from Lemma 3.4.
For the Easton support, this follows from Lemma 6.4 and the fact that for a regular pu,
fresh subsets of p are not added by a forcing of size < u (this is proved, for example,

in Corollary 4.8 in [4]). For the full support iteration, this follows from Lemma 5.3.

We proceed and prove the k-approximation property. We may consider only sets of
ordinals. Assume that o* is an ordinal, and f: o* — 2 is the characteristic function of a
r-approximated subset of a*. Our goal is to prove that f € V.

Assume by induction that for every a < o*, f [ @ € V. If cf(a*) > &, then the fact that
P does not add fresh subsets to ordinals of cofinality > k shows that f € V. Thus assume
that cf(a*) < k. Denote {* = cf(a*) and fix an increasing, cofinal sequence (ag: £ < £*) in
ar.

Work in V[G | £ +1]. We construct a <*-increasing sequence (p¢: £ < £*) in P\ £* 41,
and an increasing, continuous sequence of ordinals (f¢: £ < £*) below . In limit steps, we
have enough closure to take upper bounds. So we concentrate on successor steps. Assume
that pe has been constructed. We construct pey;. Let D be the dense open set of conditions
in the forcing P \ £* + 1, which decide f [ ag. Then, by applying lemma 2.3, there exists
Ber1 > Be and peyr > pe, such that for zvery 7 > pes1 | Besr, there exists 7 > r such that
""" pes1 \ Per1 € D. This concludes the successor step.

Let p* be an upper bound of the sequence (p¢: & < £*). Let 5* = sup{f¢: £ < £*}. Then,
over V[Geg«11], the following property holds: for every & < £*, and r > p* [ B* there exists
r’ > r such that '~ p* \ f* decides f | c.

Clearly, we can assume that theNsame property holds over V' rather than V[Ge-11]. So
we can assume that p* € P,.

Now, we finish the proof by integrating an argument of Hamkins from [8]. Let 7" C 2<%
be a sub-tree of the full binary tree, consisting of all the sequences ¢ € 2<¢" for which there
exists an extension of p* which forces that f [lh(o) =0

For every o € T', let p, be an arbitrary cgndition which extends p* and forces f [ lh(o) =
o. Note that we do not require that the p,-s extend each other; the only req;irement is
Po = D"

Fix ¢ € T. Note that p, extends the condition r~p*\ g* for r = p, [ f*. Let 7’/ > r be
a condition such that '~ p*\ 5* decides f [ lh(o). Denote pi =" p*\ g*. Then p%, p, are
compatible, and both decide f [ lh(o). ﬁms, the decided value is the same.

So we have constructed a :ub—tree T of the binary tree, and an associated tree of condi-

tions (p: o € T), such that each condition p! has the form r~p* (for some r € Ps+), and
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pilE f [lh(o) = 0.
Let X C T be the set of splitting nodes, namely nodes o € T such that 07(0),07(1) € T

Claim 5 [X| < k.

Proof. For every o € X, pj;ﬁ@ and pj;ﬁw are defined, and have the form 7,~ " p*\ 8* and
To~1) D" \ S for some To~(0), To~(1) € Pg«. Note that r,~ gy, 7o~(1) are incompatible.

Now, in order to prove that |X| < &, consider the map o — {r,—y, 76~} from X to
[Ps-]2. Since | (Pg+)*| < &, it suffices to prove that this map is injective.

Indeed, assume that o # o' are distinct points of X, which are mapped to the pairs
{ro~w), 7o~y } and {re~ (o), 7o~ 1y }, respectively.

If 0,0’ are incompatible, then {75~ ), 7¢~1y} # {ror~(0), To—~(1y }, since the conditions in
the former pair, concatenated with p* \ g*, force that f [ (Ih(o)) = o, while the conditions
in the latter pair, concatenated with p* \ g*, force thath I (Ih(o")) = 0o’

Thus, assume that 0,0’ are compatible, and, Withoajt loss of generality, o’ strictly ex-
tends o, and ¢'(lh(c)) = 0. Then any condition in the pair {ro~ ), r,~y} forces, when
concatenated with p* \ *, that f [ (Ih(c) 4+ 1) = 07(0). On the other hand, the condition
Te~(1), which belongs to the pai? {ro~w),ro~q)}, forces, when concatenated with p*\ 5%,
that i I (Ih(o)+1) # 0 (0). It follows that {ro—~ 0y, ro—~(1y} # {rer~(0y; 7o'~ (1) }, as desired. [

Finally, since f is k-approximated and |X| < k, f [ X € V. Take any extension p** of
p* which decides f [ X. Denote by g: X — 2 the function in V' for which p** IF f [ X = g.
Then p*™* Ik f =J{oc € T: 0 | X C g}, namely p** forces that f € V. O

We conclude this paper with an affirmative answer to question 1.4.

Corollary 6.7 Assume that P, is an iteration of Prikry-type forcings as in the previous
theorem, and G C Py is generic over V.. Let W € V|G| be a k-complete ultrafilter whose
underlying set belongs to X. Then W NV € V.

Proof. This is an immediate consequence of Theorem 6.6 and Lemma 6.2.
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